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1. Introduction. Let A be a positive homogeneous elliptic
operator with constant coefficients defined on R*. We consider the
eigenvalue problem of the following form
1.1) Au—pu=2iu.

Here p(x) is a positive function with lim,, ., p(®)=0. If p(x) does not
approach to zero too rapidly at infinity, then the operator A —p has an
infinite sequence of negative eigenvalues approaching to zero. We
denote by n(r) (r>0) the number of eigenvalues less than —# of problem
(1.1). In this note we study the asymptotic behavior of n(r) as r—0.
The asymptotic behavior for the Schridinger operator witha non-smooth
potential p(x) was studied in Brownell and Clark [3], and McLeod [4].

Only the theorem and a sketch of its proof are presented here and
the details will be published elsewhere.

2. Main result. Let A(D)=3 ., -n @.D* be an elliptic operator
with constant coefficients defined on R*. We suppose that A(£)>0 and
denote by K(I,a) (1>>0,a>0) the set of functions p(x) which satisfy the
following conditions:

(i) p(@) is decomposed as p(x)=p,(z)+p,(®) ;

(ii) p,(») is a positive smooth function with lim, .. |z[p,(®)=0a;

(iii) p,(x) is a nonnegative function with compact support;

(iv) p,(x) e L,, where p=1if m>n and p>n/m if m<n.

Theorem. Let A be an elliptic operator satisfying the above con-
ditions and suppose that p(x) belongs to K(, a) and that l<m. Then,

2.1 n(r)= (Zn)‘”wﬁa"/ Lpn/m=n/l | o(ym/m=n/l)
n
de .
where w=j — = and S is the surface measure of the n—1
(A +D™ f d

dimensional unit sphere if n>2 and S=2 if n=1.

Remark. Theorem 1 can be extended to the case that A(D) is an
inhomogeneous elliptic operator. The details will be discussed in the
forthcoming paper.

3. Outline of the proof. In Birman [1], it was shown that n(r)
coincides with the number of eigenvalues y less than 1 of the following
eigenvalue problem
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3.1 Au+ru= ppu.
Here we put r=1/2 (A—o0) and consider the eigenvalue problem
3.2) AAu+u=hpu.

We denote by N,(h) the number of eigenvalues less than ~ of problem
(8.2). Obviously n(#)=N,).

For the sake of simplicity, only the case that m>1>n/2 is consid-
ered. Firstly we suppose that p(x)=p,(x). Problem (3.2) is trans-
formed to the equivalent eigenvalue problem of the following form
3.3) QA+ Dp~tv=hv.

We denote by {¢;>0}5., and {¢;(®)}7_, the eigenvalues of problem (3.3)
and eigenfunctions corresponding to {,}7_, and consider the integral
equation [cf. Titchmarsh [5])

1 _11_ A 901(90) =p¥(x) IRn H“,h)(x, ?/)p*(y)goj(y)dy

3.4 + ——ﬁ—h— p¥(x) IR" H (@, ) (0@) —p@))p~ (W)o,(y)dy

Hi
=a;@)+b;x)  (G=12,.--)

(z—y)-€
here H,, 1, (x, y) = (27)~" : ¢
where H;,1,(x, y)=(2x7) & AAE) + 1+ hp(x)

IR > a3(x)de and jR > bi(@)da, for any e>0 we get
n G n 7

1 — —-n/mphn/l—2 —n/mphn/l-2 —-n/mpn/l—-2 Bh—a
(8.5) ‘]4] W_Cll h +ed"™™p + A7mpn =G () AP R
where a>p>0 and C,(e) is a constant independent of 2 and 2. From
the Tauberian theorem of Hardy and Littlewood, we have for any ¢>0
(3.6) N,(h)=C,A~™/mpm/t 4 g~ mmpnrit if h>C,(e)2%/=.
Since g/a<1, we can put =2 in (3.6). Thus the theorem is proved
when p(x) is a positive smooth function.

In order to extend the result obtained above to the case that
p(x)=p,(x) +p.(x), we need some lemmas.

Lemma 1 (cf. Birman and Solomjak [2]). Let p,(x) be a nonnega-
tive function with compact support belonging to L,, where p=1 if
m>n and p>n/m if m<n. Let M(h) be the number of eigenvalues
less than h of the problem Au=ip,u. Then,

M) =(2r) "o, f (@)™ dzham 4 o(hmm)

where w,=meas [£| A(&)<1].
Lemma 2. There is a constant ¢,>0 such that for any e<ey,
(A+7r)"'p, has at least one eigenvalue in (¢/4,¢/3).
Lemma 3. Let m(r,¢) be the number of eigenvalues greater than e
of operator (A+r)"'p,. Then,
m(r, €) < Cyle),
where Cy(e) is a constant independent of r.

¢, By estimating
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Lemma 4. For any ¢>0, there is a constant r(e) such that for any
r<r(e), (A+7)"'p, has at least one eigenvalue in (1—e,1).

From Lemmas 1, 2, 3 and 4, we get for any ¢>0,
3.7 n)<n(r, 1)+ 0

—E&

where n(aﬂ, 1 1

p1> is the number of eigenvalues less than —r of the
—¢&

pu=pu and C,(e) is a constant independent of 7.

problem Awu— 11

—¢&
From (3.7), we have

3.8) lim 77/t =n/mp(r) < Cyle)
-0

where Cy(e)= (2n)“"m§a”/ L(Lyn.

n 1—¢

Since ¢>0 is arbitrary, we obtain

3.9 lim 7*/t=nmp(r) < Cy(0)
r—0

It is not difficult to show that

(3.10) lim r™'=%mp(r) > C,(0).

=0

Thus we complete the proof of Theorem.
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