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Io Results. We consider a compact connected piecewise linear 3-
manifold M which may be either orientable or non-orientable. If
there is a component o the boundary 3M of M which .is homeomorphic
to S, we attach a 3-cell to eliminate it. Note that the orientability
o the resulting manifold coincides with that o the original one. Thus
we assume that the boundary 3M contains no components which are
homeomorphic to S throughout this note. Under this assumption
compact 3-manifolds with z=Z, Z being an infinite cyclic group will
be classified modulo Poincar Conjecture. The classification implies
that such a manifold is essentially the S-bundle over S" S S, the
twist S-bundle over S’" SS, the solid torus" SB or the solid
Klein bottle" S B.

First, by using results of H. Kneser [2], J. H. C. Whitehead [8]
and J. W. Milnor [3], we shall prove the ollowing"

Theorem 1. If M3-- and I(M3)=Z then M is homeomorphic to
the connected sum (St $2)#S or (S :S2)#S according as M is orient-
able or non-orientable, where S is a homotopy 3-sphere.

Next, using Partial Poincar Duality due to the present author [1],
we shall obtain the following"

Theorem 2. If M3:/: and z(M3)--Z then M is homeomorphic to
(SB)S or (S B)S according as M is orientable or non-orient-
able. In particular, in case M is orientable, M may be considered as
cl(S-unknotted solid torus).

From Theorems 1 and 2 we obtain the following Conclusion"
Conclusion. Any compact connected 3-manifold with =Z is

homeomorphic to (S S)#S, (S :S)#S, (S B)#S or (S :B)#S
with a finite number of open 3-cells removed.

II. Sketch of proofs. Proofs will be considered in the piecewise
linear category.

Proof of Theorem 1. By a result o H. Kneser [2], M is homeo-
morphic to PS, where P is a prime 3-manifold in the sense that if P
is homeomorphic to PI#P2 then P or P is a 3-sphere. Since z(P)=Z,
from the sphere theorem in the sense o J. H. C. Whitehead [8], we
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obtain a 2-sphere 27 in P which does not bound a 3-cell. Because P is
prime 27 does not separate P. Hence cutting along 27 and attaching
two 3-cells to eliminate the resulting boundaries, we have a closed
manifold P’. Choose a 3-cell B in P’ containing these pasted two 3-
cells in the interior. Then P’--cl(P’--B) U B and the original manifold
P becomes cl(P’--B) X, where X is obtained from B by removing
disjoint two open 3-cells and then matching the resulting boundaries.
Therefore P is homeomorphic to P’(SS) or P’(SS). Since P
is prime, P is homeomorphic to S S or S S. (The above technique
appears in J. W. Milnor’s paper [3, Lemma 1].) This completes the out-
lined proof.

Proof of Theorem 2. Let p" M--.M be the universal covering
which is obviously infinite cyclic. To prove that the homology H.(M Z)
is finitely generated, we need Lemma"

Lemma. For each component F of 3M, the canonical homomor-
phism (F)-.u(M) is non-trivial.

Using this Lemma, each component of the preimage p-(F) is an
infinite cyclic covering space over F because z(M) Z. (See [1, Lemma
3.1].) Hence each component of 3M is non-compact. This implies
H.(3M; Z)--0. By the Partial Poincar Duality [1, Theorem 2.1], we
have H(M, M; Z) H(M; Z) z Z. Using the homology exact sequence
of the pair (M, 3M), we obtain that H(M;Z) is finitely generated.
Thus H.(M;Z) is finitely generated.

Again, applying the Partial Poincar Duality, H*(M; Z)
H_(M,M; Z) for any i. An easy computation shows that M is
contractible. Hence M is homotopy equivalent to S and 3M is homeo-
morphic to the torus or the Klein bottle (Note that 3M is connected
and Euler characteristic x(3M) is equal to 2;(M) 2(S)=0). By the
loop theorem [6], we can choose a proper 2-cell D in M so that D does
not separate 3M. Cutting along D, we obtain a manifold M* whose
boundary M* is a 2-sphere, for an easy computation implies z(M*)

2. Choose a 3-cell B containing two copies of D so that z/

--cI(M*--B)B is a proper 2-cell in M*. Then M*-cl(M*--B)[JB
and the original manifold M is homeomorphic to the disk sum
cl(M*--B)X, where X is obtained from B by matching disjoint two
2-cells in 3B--z/. Therefore M is homeomorphic to cl(M*--B)(SB)
or cl(M*--B)(SB). Using (M)=Z, we see that cl(M*-B) is a
homotopy 3-cell. Hence M is homeomorphic to S(SB) or
S#(S ,B). This completes the proof.

Proof of lemma. Suppose that for some component F of 3M the
canonical homomorphism z(F)-.(M) is trivial. Since F is not a 2-
sphere we can choose two simple polygonal loops l and l. in F which
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intersect transversally in a single point, l, l are null homotopic in M.
Hence, by Dehn’s lemma [5] or the loop theorem [6], there exist (poly-
hedral) 2-cells D, D in M bounded by l, l such that D3M--I,
D 3M--- l, respectively. Consider the intersection D D and keep
an eye on the intersection curve L starting rom the intersection point
11 12. Then L must be an endless line. This is obviously impossible.
Thus we prove Lemma.

III. Supplementary remarks. Theorem 2 can be also shown by
using the Stallings fibration theorem [7] instead of the Partial Poincar
Duality. This duality for 3-manifolds is weaker than the Stallings
fibration theorem, but more general. The ollowing discussion shows
the relation between them" I M is a covering space associated with
epimorphism " 7(M)Z and i H(M;R) is finitely generated over a
principal ideal domain R and if M is orientable over R, the Partial
Poincar Duality implies that H.(M; R) is finitely generated and
H(M3; G)H2_(M3, 3M3; G) or any i and any R-module G.

If ker [7" (M)-Z] is finitely generated and is not Z and if M is
irreducible, Stallings showed that M is a fiber bundle over S whose
fiber is a (proper) connected surface F in M. This implies that, in
act, M splits" (M, 3M) (F, 3F) R, hence, in case M is orientable,
there is a duality H(M; Z)._(M, M;Z) for any i.

On the other hand, if H(M;Z)--Z, then it can be shown
that H,(M; Q) is finitely generated over Q. In case 3M:/:, we see
that 3M is homeomorphic to S S or S S according as M is orient-
able or non-orientable. I M is orientable, there is a duality H(M; Q)
H_(M, 3M; Q) or any i. For i--O, we iner that H(M; Z)
H(M, 3M;Z).Z. The knot theory is known to be a non-trivial
example of useful applications of this duality. (See J. W. Milnor [4].)

Because o the absence o the theory corresponding to the Stallings
fibration theorem, the Partial Poincar Duality is expected to be useful
or 4-manifolds. For example, using this, the ollowing is shown" A
locally unknotted 2-knot S in 4-sphere S (in the piecewise linear cate-
gory) is algebraically unknotted if z(S-S2)=Z. See [1].
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