39. A Classification of Compact 3-Manifolds with Infinite Cyclic Fundamental Groups

By Akio KAWAUCHI Department of Mathematics, Kobe University

(Comm. by Kunihiko KODAIRA, M. J. A., March 12, 1974)

I. Results. We consider a compact connected piecewise linear 3manifold M^3 which may be either orientable or non-orientable. If there is a component of the boundary ∂M^3 of M^3 which is homeomorphic to S^2 , we attach a 3-cell to eliminate it. Note that the orientability of the resulting manifold coincides with that of the original one. Thus we assume that the boundary ∂M^3 contains no components which are homeomorphic to S^2 throughout this note. Under this assumption compact 3-manifolds with $\pi_1 = Z, Z$ being an infinite cyclic group will be classified modulo Poincaré Conjecture. The classification implies that such a manifold is essentially the S^2 -bundle over $S^1: S^1 \times S^2$, the twist S^2 -bundle over $S^1: S^1 \times S^2$, the solid torus: $S^1 \times B^2$ or the solid Klein bottle: $S^1 \times B^2$.

First, by using results of H. Kneser [2], J. H. C. Whitehead [8] and J. W. Milnor [3], we shall prove the following:

Theorem 1. If $\partial M^3 = \phi$ and $\pi_1(M^3) = Z$ then M^3 is homeomorphic to the connected sum $(S^1 \times S^2) \# \tilde{S}^3$ or $(S^1 \times S^2) \# \tilde{S}^3$ according as M^3 is orientable or non-orientable, where \tilde{S}^3 is a homotopy 3-sphere.

Next, using Partial Poincaré Duality due to the present author [1], we shall obtain the following:

Theorem 2. If $\partial M^3 \neq \phi$ and $\pi_1(M^3) = Z$ then M^3 is homeomorphic to $(S^1 \times B^2) \# \tilde{S}^3$ or $(S^1 \times B^2) \# \tilde{S}^3$ according as M^3 is orientable or non-orientable. In particular, in case M^3 is orientable, M^3 may be considered as $cl(\tilde{S}^3$ -unknotted solid torus).

From Theorems 1 and 2 we obtain the following Conclusion:

Conclusion. Any compact connected 3-manifold with $\pi_1 = Z$ is homeomorphic to $(S^1 \times S^2) \# \tilde{S}^3$, $(S^1 \times S^2) \# \tilde{S}^3$, $(S^1 \times B^2) \# \tilde{S}^3$ or $(S^1 \times B^2) \# \tilde{S}^3$ with a finite number of open 3-cells removed.

II. Sketch of proofs. Proofs will be considered in the piecewise linear category.

Proof of Theorem 1. By a result of H. Kneser [2], M^3 is homeomorphic to $P \# \tilde{S}^3$, where P is a prime 3-manifold in the sense that if P is homeomorphic to $P_1 \# P_2$ then P_1 or P_2 is a 3-sphere. Since $\pi_1(P) = Z$, from the sphere theorem in the sense of J. H. C. Whitehead [8], we obtain a 2-sphere Σ in P which does not bound a 3-cell. Because P is prime Σ does not separate P. Hence cutting along Σ and attaching two 3-cells to eliminate the resulting boundaries, we have a closed manifold P'. Choose a 3-cell B^3 in P' containing these pasted two 3cells in the interior. Then $P' = cl(P' - B^3) \cup B^3$ and the original manifold P becomes $cl(P' - B^3) \cup X$, where X is obtained from B^3 by removing disjoint two open 3-cells and then matching the resulting boundaries. Therefore P is homeomorphic to $P' \sharp (S^1 \times S^2)$ or $P' \sharp (S^1 \times S^2)$. Since Pis prime, P is homeomorphic to $S^1 \times S^2$ or $S^1 \times S^2$. (The above technique appears in J. W. Milnor's paper [3, Lemma 1].) This completes the outlined proof.

Proof of Theorem 2. Let $p: \tilde{M}^3 \to M^3$ be the universal covering which is obviously infinite cyclic. To prove that the homology $H_*(\tilde{M}^3; Z)$ is finitely generated, we need Lemma:

Lemma. For each component F of ∂M^3 , the canonical homomorphism $\pi_1(F) \rightarrow \pi_1(M^3)$ is non-trivial.

Using this Lemma, each component of the preimage $p^{-1}(F)$ is an infinite cyclic covering space over F because $\pi_1(M^3) = Z$. (See [1, Lemma 3.1].) Hence each component of $\partial \tilde{M}^3$ is non-compact. This implies $H_2(\partial \tilde{M}^3; Z) = 0$. By the Partial Poincaré Duality [1, Theorem 2.1], we have $H_2(\tilde{M}^3, \partial \tilde{M}^3; Z) \approx H^0(\tilde{M}^3; Z) \approx Z$. Using the homology exact sequence of the pair $(\tilde{M}^3, \partial \tilde{M}^3)$, we obtain that $H_2(\tilde{M}^3; Z)$ is finitely generated. Thus $H_*(\tilde{M}^3; Z)$ is finitely generated.

Again, applying the Partial Poincaré Duality, $H^i(ilde{M}^3; Z)$ $\approx H_{2-i}(\tilde{M}^3, \partial \tilde{M}^3; Z)$ for any *i*. An easy computation shows that \tilde{M}^3 is contractible. Hence M^3 is homotopy equivalent to S^1 and ∂M^3 is homeomorphic to the torus or the Klein bottle (Note that ∂M^3 is connected and Euler characteristic $\gamma(\partial M^3)$ is equal to $2\gamma(M^3) = 2\gamma(S^1) = 0$). By the loop theorem [6], we can choose a proper 2-cell D in M^3 so that ∂D does not separate ∂M^3 . Cutting along D, we obtain a manifold M^* whose boundary ∂M^* is a 2-sphere, for an easy computation implies $\gamma(\partial M^*)$ Choose a 3-cell B^3 containing two copies of D so that Δ = 2. $= cl(M^* - B^3) \cap B^3$ is a proper 2-cell in M^* . Then $M^* = cl(M^* - B^3) \cup B^3$ and the original manifold M^3 is homeomorphic to the disk sum $cl(M^*-B^3) \not\models X$, where X is obtained from B^3 by matching disjoint two 2-cells in $\partial B^3 - \Delta$. Therefore M^3 is homeomorphic to $cl(M^* - B^3) \not\models (S^1 \times B^2)$ or $cl(M^*-B^3) \not\models (S^1 \times B^2)$. Using $\pi_1(M^3) = Z$, we see that $cl(M^*-B^3)$ is a homotopy 3-cell. Hence M^3 is homeomorphic to $\tilde{S}^3 \# (S^1 \times B^2)$ or \tilde{S}^{3} # $(S^{1} \times_{r} B^{2})$. This completes the proof.

Proof of lemma. Suppose that for some component F of ∂M^3 the canonical homomorphism $\pi_1(F) \rightarrow \pi_1(M^3)$ is trivial. Since F is not a 2-sphere we can choose two simple polygonal loops l_1 and l_2 in F which

intersect transversally in a single point. l_1, l_2 are null homotopic in M^3 . Hence, by Dehn's lemma [5] or the loop theorem [6], there exist (polyhedral) 2-cells D_1, D_2 in M^3 bounded by l_1, l_2 such that $D_1 \cap \partial M^3 = l_1$, $D_2 \cap \partial M^3 = l_2$, respectively. Consider the intersection $D_1 \cap D_2$ and keep an eye on the intersection curve L starting from the intersection point $l_1 \cap l_2$. Then L must be an endless line. This is obviously impossible. Thus we prove Lemma.

III. Supplementary remarks. Theorem 2 can be also shown by using the Stallings fibration theorem [7] instead of the Partial Poincaré Duality. This duality for 3-manifolds is weaker than the Stallings fibration theorem, but more general. The following discussion shows the relation between them: If \tilde{M}^3 is a covering space associated with epimorphism $\gamma: \pi_1(M^3) \rightarrow Z$ and if $H_1(\tilde{M}^3; R)$ is finitely generated over a principal ideal domain R and if \tilde{M}^3 is orientable over R, the Partial Poincaré Duality implies that $H_*(\tilde{M}^3; R)$ is finitely generated and $H^i(\tilde{M}^3; G) \approx H_{2-i}(\tilde{M}^3, \partial \tilde{M}^3; G)$ for any i and any R-module G.

If ker $[\gamma: \pi_1(M^3) \rightarrow Z]$ is finitely generated and is not Z_2 and if M^3 is irreducible, Stallings showed that M^3 is a fiber bundle over S^1 whose fiber is a (proper) connected surface F in M^3 . This implies that, in fact, \tilde{M}^3 splits: $(\tilde{M}^3, \partial \tilde{M}^3) = (F, \partial F) \times R^1$, hence, in case \tilde{M}^3 is orientable, there is a duality $H^i(\tilde{M}^3; Z) \approx_{2^{-i}} (\tilde{M}^3, \partial \tilde{M}^3; Z)$ for any *i*.

On the other hand, if $H_1(M^3; Z) = Z$, then it can be shown that $H_*(\tilde{M}^3; Q)$ is finitely generated over Q. In case $\partial M^3 \neq \phi$, we see that ∂M^3 is homeomorphic to $S^1 \times S^1$ or $S^1 \times S^1$ according as M^3 is orientable or non-orientable. If \tilde{M}^3 is orientable, there is a duality $H^i(\tilde{M}^3; Q)$ $\approx H_{2-i}(\tilde{M}^3, \partial \tilde{M}^3; Q)$ for any *i*. For i=0, we infer that $H^0(\tilde{M}^3; Z)$ $\approx H_2(\tilde{M}^3, \partial \tilde{M}^3; Z) \approx Z$. The knot theory is known to be a non-trivial example of useful applications of this duality. (See J. W. Milnor [4].)

Because of the absence of the theory corresponding to the Stallings fibration theorem, the Partial Poincaré Duality is expected to be useful for 4-manifolds. For example, using this, the following is shown: A locally unknotted 2-knot S^2 in 4-sphere S^4 (in the piecewise linear category) is algebraically unknotted if $\pi_1(S^4-S^2)=Z$. See [1].

References

- [1] A. Kawauchi: On partial Poincaré duality and higher dimensional knots with $\pi_1 = Z$. Master Thesis, Kobe Univ. (1974).
- [2] H. Kneser: Geschlossen Flächen in dreidimensionalen Mannigfaltigkeiten. Jber. Deutsch. Math. Verein., 38, 248-260 (1929).
- [3] J. W. Milnor: A unique decomposition theorem for 3-manifolds. Amer. J. Math., 84, 1-7 (1962).
- [4] ——: Infinite cyclic coverings. Conference on the Topology of Manifold (Michigan State Univ. E. Lansing, Michigan 1967). Prindle, Weber and Schmidt, Boston, Mass. (1968).

- [5] C. D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots. Ann. of Math., 66, 1-26 (1957).
- [6] J. Stallings: On the loop theorem. Ann. of Math., 72, 12–19 (1960).
- [7] ——: On Fibering Certain 3-Manifolds. Topology of 3-Manifolds and Related Topics (ed. M. K. Fort, Jr.). Prentice Hall, pp. 110-117 (1962).
- [8] J. H. C. Whitehead: On finite cocycles and the sphere theorem. Colloq. Math., 6, 271-281 (1957).