58. Asymptotic Distribution $\bmod m$ and Independence of Sequences of Integers. II

By Lauwerens Kuipers*) and Harald Niederreiter**)

(Comm. by Kenjiro Shoda, M. J. A., April 18, 1974)

This is the continuation of the paper on the preceding pages. For notation and terminology, we refer to the first part. The numbering of theorems, definitions, and equations is continued from the first part.

We remark that if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$, then $\left(a_{n}\right)$ and $\left(a_{n}+b_{n}\right)$ need not be independent $\bmod m$. For, otherwise, since $\left(a_{n}\right)$ and (0) are independent $\bmod m$ by Theorem 4, $\left(a_{n}\right)$ and $\left(a_{n}\right)$ would be independent $\bmod m$, which happens only under special circumstances (see Theorem 3). However, the following result can be shown.

Theorem 7. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be independent $\bmod m$ with $\left(b_{n}\right)$ $u . d . \bmod m$. Let $h, k, l \in \boldsymbol{Z}$ be such that $\mathrm{g} . \mathrm{c} . \mathrm{d} .(l, m)$ divides k. Then the sequences $\left(h a_{n}\right), n=1,2, \cdots$, and $\left(k a_{n}+l b_{n}\right), n=1,2, \cdots$, are independent $\bmod m$.

Proof. Let $q \in \boldsymbol{Z}$ be a solution of the congruence $l x \equiv k(\bmod m)$. By a remark following Theorem 6, the sequence ($q a_{n}+b_{n}$), $n=1,2, \cdots$, is u.d. $\bmod m$. For $r, s \in \boldsymbol{Z}$ we have

$$
\begin{aligned}
\left\|A\left(a_{n} \equiv r, q \alpha_{n}+b_{n} \equiv s\right)\right\| & =\left\|A\left(a_{n} \equiv r, b_{n} \equiv s-q r\right)\right\| \\
& =\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n} \equiv s-q r\right)\right\|=\left\|A\left(a_{n} \equiv r\right)\right\| \cdot \frac{1}{m} \\
& =\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(q a_{n}+b_{n} \equiv s\right)\right\|
\end{aligned}
$$

and therefore the sequences $\left(a_{n}\right)$ and $\left(q a_{n}+b_{n}\right)$ are independent $\bmod m$. Thus, by Theorem 2, the sequences $\left(h a_{n}\right)$ and $\left(l q a_{n}+l b_{n}\right)$ are independent $\bmod m$. But the second sequence is $\bmod m$ identical with $\left(k a_{n}\right.$ $+l b_{n}$), and so we are done.

Remark. Theorem 7 has the following partial converse. If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have α and β as their a.d.f. $\bmod m$, respectively, if $\alpha(j)>0$ and $\beta(j)>0$ for all j, and if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$, then the independence $\bmod m$ of $\left(a_{n}\right)$ and $\left(k a_{n}+l b_{n}\right)$ implies that g.c.d. (l, m) divides k. For if k were not divisible by g.c.d. (l, m), then we would have

$$
\begin{aligned}
\left\|A\left(a_{n} \equiv 0\right)\right\| \cdot\left\|A\left(k a_{n}+l b_{n} \equiv k\right)\right\| & =\left\|A\left(a_{n} \equiv 0, k a_{n}+l b_{n} \equiv k\right)\right\| \\
& =\left\|A\left(a_{n} \equiv 0, l b_{n} \equiv k\right)\right\|=0 .
\end{aligned}
$$

[^0]This would imply $\left\|A\left(k a_{n}+l b_{n} \equiv k\right)\right\|=0$. But by Theorem 1 we have

$$
\left\|A\left(k a_{n}+l b_{n} \equiv k\right)\right\|=\sum_{\substack{r, s=0 \\ k r+s=(s)=0}}^{m-1} \alpha(r) \beta(s) \geq \alpha(l) \beta(0)>0,
$$

which results in a contradiction. As the above argument shows, the condition on α and β may even be relaxed.

We generalize now a result of Kuipers and Shiue [2].
Theorem 8. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have α and β as their a.d.f. $\bmod m$, respectively, and let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be independent $\bmod m$. Let j be a fixed integer with $\alpha(j)>0$, and let $\left(a_{k_{n}}\right)$ be the subsequence of $\left(a_{n}\right)$ containing all elements $a_{k_{n}}$ with the property $\alpha_{k_{n}} \equiv j(\bmod m)$. Then the sequence (c_{n}), where $c_{n}=b_{k_{n}}$ for $n=1,2, \cdots$, has β as its a.d.f. $\bmod m$.

Proof. Let r be an integer. We observe that $A\left(k_{N} ; j, a_{n}\right)=N$ and $A\left(k_{N} ; j, a_{n} ; r, b_{n}\right)=A\left(N ; r, c_{n}\right)$ for all $N \geq 1$. From the assumptions of the theorem, we have

$$
\lim _{N \rightarrow \infty} A\left(k_{N} ; j, a_{n} ; r, b_{n}\right) / k_{N}=\left\|A\left(a_{n} \equiv j, b_{n} \equiv r\right)\right\|=\alpha(j) \beta(r)
$$

and $\lim _{N \rightarrow \infty} N / k_{N}=\lim _{N \rightarrow \infty} A\left(k_{N} ; j, a_{n}\right) / k_{N}=\alpha(j)$. Now write

$$
\frac{A\left(N ; r, c_{n}\right)}{N}=\frac{A\left(k_{N} ; j, a_{n} ; r, b_{n}\right)}{k_{N}} \cdot \frac{k_{N}}{N},
$$

and letting $N \rightarrow \infty$, we obtain the desired result.
Remark. The sequences $\left(a_{n}\right)$ and $\left(c_{n}\right)$ in Theorem 8 need not be independent $\bmod m$. Consider the following example. Let $m=2$, let (a_{n}) be the periodic sequence $0,1,0,1, \ldots$ of period 2 , and let $\left(b_{n}\right)$ be the periodic sequence $0,0,1,1,0,0,1,1, \ldots$ of period 4. Then $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod 2$ and u.d. $\bmod 2$. Choose $j=0$ in Theorem 8 ; then $\left(c_{n}\right)=\left(a_{n}\right)$, and $\left(a_{n}\right)$ and $\left(c_{n}\right)$ are not independent mod 2.

Most of our results on independent pairs of sequences can be extended to independent tuples. For $s \geq 3$, let $\left(a_{n}^{(1)}\right), \cdots,\left(a_{n}^{(s)}\right)$ be s sequences of integers. For $N \geq 1$ and $j_{1}, \cdots, j_{s} \in Z$, let $A\left(N ; j_{1}, a_{n}^{(1)} ; \cdots\right.$; $j_{s}, a_{n}^{(s)}$) be the number of $n, 1 \leq n \leq N$, such that simultaneously $a_{n}^{(i)}$ $\equiv j_{i}(\bmod m)$ for $1 \leq i \leq s$. We write

$$
\left\|A\left(a_{n}^{(1)} \equiv j_{1}, \cdots, a_{n}^{(s)} \equiv j_{s}\right)\right\|=\lim _{N \rightarrow \infty} A\left(N ; j_{1}, a_{n}^{(1)} ; \cdots ; j_{s}, a_{n}^{(s)}\right) / N
$$

in case the limit exists.
Definition 3. The sequences $\left(a_{n}^{(1)}\right), \cdots,\left(a_{n}^{(s)}\right)$ are called independent $\bmod m$ if for all $j_{1}, \cdots, j_{s} \in \boldsymbol{Z}$ with $0 \leq j_{i}<m$ for $1 \leq i \leq s$ the limits $\left\|A\left(a_{n}^{(1)} \equiv j_{1}, \cdots, a_{n}^{(s)} \equiv j_{s}\right)\right\|$ exist and we have

$$
\left\|A\left(a_{n}^{(1)} \equiv j_{1}, \cdots, a_{n}^{(s)} \equiv j_{s}\right)\right\|=\prod_{i=1}^{s}\left\|A\left(\alpha_{n}^{(i)} \equiv j_{i}\right)\right\| .
$$

Theorem 9. If the sequences $\left(a_{n}^{(1)}\right), \cdots,\left(a_{n}^{(s)}\right)$ are independent $\bmod m$, then for any integer t with $2 \leq t<s$ the sequences $\left(a_{n}^{(1)}\right), \cdots$, $\left(a_{n}^{(t)}\right)$ are independent $\bmod m$.

Proof. We have

$$
A\left(N ; j_{1}, a_{n}^{(1)} ; \cdots ; j_{t}, a_{n}^{(t)}\right)=\sum_{j_{t+1}, \cdots, j_{s}=0}^{m-1} A\left(N ; j_{1}, a_{n}^{(1)} ; \cdots ; j_{s}, a_{n}^{(s)}\right)
$$

Divide by N and let $N \rightarrow \infty$. Then

$$
\begin{aligned}
\left\|A\left(a_{n}^{(1)} \equiv j_{1}, \cdots, a_{n}^{(t)} \equiv j_{t}\right)\right\|= & \sum_{j_{t+1}, \cdots, j_{s}=0}^{m-1}\left\|A\left(a_{n}^{(1)} \equiv j_{1}\right)\right\| \cdots\left\|A\left(a_{n}^{(s)} \equiv j_{s}\right)\right\| \\
= & \left\|A\left(a_{n}^{(1)} \equiv j_{1}\right)\right\| \cdots\left\|A\left(a_{n}^{(t)} \equiv j_{t}\right)\right\| \\
& \cdot\left(\sum_{j_{t+1}=0}^{m-1}\left\|A\left(a_{n}^{(t+1)} \equiv j_{t+1}\right)\right\|\right) \cdots\left(\sum_{j_{s}=0}^{m-1}\left\|A\left(a_{n}^{(s)} \equiv j_{s}\right)\right\|\right) \\
= & \left\|A\left(a_{n}^{(1)} \equiv j_{1}\right)\right\| \cdots\left\|A\left(a_{n}^{(t)} \equiv j_{t}\right)\right\| .
\end{aligned}
$$

Remark. If for all t with $2 \leq t<s$, all t-tuples that can be formed from a given s-tuple of sequences are independent $\bmod m$, then the s tuple itself need not necessarily be independent $\bmod m$. We offer the following simple counter-example. Let (a_{n}) be the periodic sequence $0,1,0,1, \cdots$ of period 2 , let $\left(b_{n}\right)$ be the periodic sequence $0,1,1,0,0,1$, $1,0, \ldots$ of period 4 , and let $\left(c_{n}\right)$ be the periodic sequence $0,0,1,1,0,0$, $1,1, \ldots$ of period 4. Each of these sequences is u.d. mod 2, and it is easily seen that they are pairwise independent mod 2. However, the triple $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ is not independent $\bmod 2$ since $\| A\left(a_{n} \equiv 1, b_{n} \equiv 1, c_{n}\right.$ $\equiv 1) \|=0$.

The following three results are shown in exactly the same way as Theorems 1, 2 and 3, respectively.

Theorem 10. The sequences $\left(a_{n}^{(1)}\right), \cdots,\left(a_{n}^{(s)}\right)$ are independent $\bmod m$ if and only if for all $h_{1}, \cdots, h_{s} \in \boldsymbol{Z}$ the sequence $\left(h_{1} a_{n}^{(1)}+\cdots+h_{s} a_{n}^{(s)}\right)$, $n=1,2, \cdots$, has an a.d.f. $\bmod m$ given by

$$
\left\|A\left(h_{1} a_{n}^{(1)}+\cdots+h_{s} a_{n}^{(s)} \equiv j\right)\right\|
$$

$$
\begin{equation*}
=\sum_{\substack{r_{1}, r_{1}, r_{s}=0 \\ h_{1} r_{1}+\cdots+h_{s} r_{s}=j(\bmod m)}}^{m-1}\left\|A\left(a_{n}^{(1)} \equiv r_{1}\right)\right\| \cdots\left\|A\left(a_{n}^{(s)} \equiv r_{s}\right)\right\| \tag{4}
\end{equation*}
$$

for all $j \in Z$.
Theorem 11. Let $\left(a_{n}^{(1)}\right), \cdots,\left(a_{n}^{(s)}\right)$ be independent $\bmod m$, and let $h_{1}, \cdots, h_{s} \in \boldsymbol{Z}$. Then $\left(h_{1} a_{n}^{(1)}\right), \cdots,\left(h_{s} a_{n}^{(s)}\right)$ are independent $\bmod m$.

Theorem 12. Suppose $\left(a_{n}\right)$ has α as its a.d.f. $\bmod m$. Then $\left(a_{n}\right)$, $\cdots,\left(a_{n}\right)$ are independent $\bmod m$ if and only if $\alpha(j)=1$ for some j. The following is an analogue of Theorem 4.

Theorem 13. Suppose $\left(a_{n}\right)$ has α as its a.d.f. $\bmod m$. Then $\left(a_{n}\right)$, $\left(b_{n}^{(1)}\right), \cdots,\left(b_{n}^{(s-1)}\right)$ are independent $\bmod m$ for any sequences $\left(b_{n}^{(1)}\right), \cdots$, ($b_{n}^{(s-1)}$) independent $\bmod m$ if and only if $\alpha(j)=1$ for some j.

Proof. First we show the necessity. It is easily seen that the sequences $\left(a_{n}\right),\left(c_{n}^{(1)}\right), \cdots,\left(c_{n}^{(s-2)}\right)$ are independent $\bmod m$, where $\left(c_{n}^{(i)}\right)=(0)$ for $1 \leq i \leq s-2$. Therefore, by the given property of (a_{n}), the sequences $\left(a_{n}\right),\left(a_{n}\right),\left(c_{n}^{(1)}\right), \cdots,\left(c_{n}^{(s-2)}\right)$ are independent $\bmod m$. It follows from Theorem 9 that $\left(a_{n}\right)$ and $\left(a_{n}\right)$ are independent $\bmod m$, so that an application of Theorem 3 completes the argument.

Now suppose that $\alpha(j)=1$ for some $j=0,1, \cdots, m-1$, and let ($b_{n}^{(1)}$),
$\cdots,\left(b_{n}^{(s-1)}\right)$ be independent $\bmod m$. For $r_{1}, \cdots, r_{s} \in \boldsymbol{Z}$ with $0 \leq r_{i}<m$ for $1 \leq i \leq s$ and $r_{1} \neq j$ we have $A\left(N ; r_{1}, a_{n} ; r_{2}, b_{n}^{(1)} ; \cdots ; r_{s}, b_{n}^{(s-1)}\right)$ $\leq A\left(N ; r_{1}, a_{n}\right)$ for all $N \geq 1$, so that

$$
0=\left\|A\left(a_{n} \equiv r_{1}, b_{n}^{(1)} \equiv r_{2}, \cdots, b_{n}^{(s-1)} \equiv r_{s}\right)\right\|=\left\|A\left(a_{n} \equiv r_{1}\right)\right\| \cdot \prod_{i=2}^{s}\left\|A\left(b_{n}^{(i-1)} \equiv r_{i}\right)\right\| .
$$

Furthermore, we have

$$
\begin{aligned}
\frac{A\left(N ; r_{2}, b_{n}^{(1)} ; \cdots ; r_{s}, b_{n}^{(s-1)}\right)}{N} & -\sum_{\substack{k=0 \\
k \neq j}}^{m-1} \frac{A\left(N ; k, a_{n}\right)}{N} \\
& \leq \frac{A\left(N ; j, a_{n} ; r_{2}, b_{n}^{(1)} ; \cdots ; r_{s}, b_{n}^{(s-1)}\right)}{N} \\
& \leq \frac{A\left(N ; r_{2}, b_{n}^{(1)} ; \cdots ; r_{s}, b_{n}^{(s-1)}\right)}{N}
\end{aligned}
$$

for all $N \geq 1$, hence

$$
\begin{aligned}
\left\|A\left(a_{n} \equiv j, b_{n}^{(1)} \equiv r_{2}, \cdots, b_{n}^{(s-1)} \equiv r_{s}\right)\right\| & =\left\|A\left(b_{n}^{(1)} \equiv r_{2}, \cdots, b_{n}^{(s-1)} \equiv r_{s}\right)\right\| \\
& =\left\|A\left(a_{n} \equiv j\right)\right\| \cdot \prod_{i=2}^{s}\left\|A\left(b_{n}^{(i-1)} \equiv r_{i}\right)\right\| .
\end{aligned}
$$

Thus $\left(a_{n}\right),\left(b_{n}^{(1)}\right), \cdots,\left(b_{n}^{(s-1)}\right)$ are independent $\bmod m$.
With an admissible s-tuple $\bmod m$ of sequences defined in obvious analogy with Definition 2, we have the following criterion.

Theorem 14. The s-tuple $\left(c_{n}^{(1)}\right), \cdots,\left(c_{n}^{(s)}\right)$ is admissible $\bmod m$ if and only if each $\left(c_{n}^{(i)}\right), 1 \leq i \leq s$, has an a.d.f. $\bmod m\left(\right.$ denoted by γ_{i}, say) and $\gamma_{1}\left(j_{1}\right)=\gamma_{2}\left(j_{2}\right)=\cdots=\gamma_{s}\left(j_{s}\right)=1$ for some integers j_{1}, \cdots, j_{s}.

Proof. To show necessity, let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be an arbitrary pair of independent sequences $\bmod m$. By repeated application of Theorem 13 , it follows that $\left(a_{n}\right),\left(b_{n}\right),(0), \cdots,(0)$ are independent $\bmod m$, where we have added $s-2$ sequences (0). By hypothesis, the sequences $\left(a_{n}+c_{n}^{(1)}\right),\left(b_{n}+c_{n}^{(2)}\right),\left(c_{n}^{(3)}\right), \cdots,\left(c_{n}^{(s)}\right)$ are independent $\bmod m$; in particular, the sequences $\left(a_{n}+c_{n}^{(1)}\right)$ and $\left(b_{n}+c_{n}^{(2)}\right)$ are independent $\bmod m$ by Theorem 9. This shows that the pair $\left(c_{n}^{(1)}\right),\left(c_{n}^{(2)}\right)$ is admissible $\bmod m$, so that Theorem 5 can be applied. As to the other sequences $\left(c_{n}^{(i)}\right)$, one proceeds in a similar way.

In order to prove sufficiency, one shows that if $\left(a_{n}^{(1)}\right), \cdots,\left(a_{n}^{(s)}\right)$ are independent $\bmod m$, then one can take the sequences $\left(c_{n}^{(i)}\right)$, one at a time, and add them termwise to the corresponding ($a_{n}^{(i)}$) without affecting independence $\bmod m$. The method is completely similar to that in the sufficiency part of the proof of Theorem 5. One uses, of course, Theorem 10 instead of Theorem 1.

Theorem 6 has an obvious analogue, for one shows by the same method (replacing, of course, the application of (2) by the application of (4)) that if $\left(a_{n}^{(1)}\right), \cdots,\left(a_{n}^{(s)}\right)$ are independent $\bmod m$ and u.d. $\bmod m$ and if h_{1}, \cdots, h_{s} are integers with g.c.d. $\left(h_{1}, \cdots, h_{s}, m\right)=1$, then the sequence $\left(h_{1} a_{n}^{(1)}+\cdots+h_{s} a_{n}^{(s)}\right), n=1,2, \cdots$, is u.d. $\bmod m$.

The following is an analogue of Theorem 8.

Theorem 15. For $1 \leq i \leq s$, let $\left(\alpha_{n}^{(i)}\right)$ have α_{i} as its a.d.f. $\bmod m$, and suppose that $\left(a_{n}^{(1)}\right), \cdots,\left(\alpha_{n}^{(s)}\right)$ are independent $\bmod m$. For given $t \in \boldsymbol{Z}$ with $1 \leq t<s$, let j_{1}, \cdots, j_{t} be fixed integers such that $\alpha_{i}\left(j_{i}\right)>0$ for $1 \leq i \leq t$. Let $k_{1}<k_{2}<\cdots<k_{n}<\cdots$ be the sequence of all subscripts for which $a_{k_{n}}^{(i)} \equiv j_{i}(\bmod m)$ for all $i, 1 \leq i \leq t$. Then for the sequences $\left(\alpha_{k_{n}}^{(t+1)}\right), \cdots,\left(\alpha_{k_{n}}^{(s)}\right)$ we have

$$
\left\|A\left(a_{k_{n}}^{(t+1)} \equiv j_{t+1}, \cdots, a_{k_{n}}^{(s)} \equiv j_{s}\right)\right\|=\left\|A\left(a_{n}^{(t+1)} \equiv j_{t+1}, \cdots, a_{n}^{(s)} \equiv j_{s}\right)\right\|
$$

for all $j_{t+1}, \cdots, j_{s} \in Z$. Furthermore, if $t \leq s-2$, then $\left(\alpha_{k_{n}}^{(t+1)}\right), \cdots,\left(a_{k_{n}}^{(s)}\right)$ are independent $\bmod m$.

Proof. Let j_{t+1}, \cdots, j_{s} be integers. We note that $A\left(k_{N} ; j_{1}, a_{n}^{(1)}\right.$; $\left.\cdots ; j_{t}, a_{n}^{(t)}\right)=N$ and $A\left(k_{N} ; j_{1}, a_{n}^{(1)} ; \cdots ; j_{s}, a_{n}^{(s)}\right)=A\left(N ; j_{t+1}, a_{k_{n}}^{(t+1)} ; \cdots ; j_{s}\right.$, $\left.a_{k_{n}}^{(s)}\right)$ for all $N \geq 1$. From the assumptions of the theorem, we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} A\left(k_{N} ; j_{1}, a_{n}^{(1)} ; \cdots ; j_{s}, a_{n}^{(s)}\right) / k_{N} & =\left\|A\left(a_{n}^{(1)} \equiv j_{1}, \cdots, a_{n}^{(s)} \equiv j_{s}\right)\right\| \\
& =\alpha_{1}\left(j_{1}\right) \cdots \alpha_{s}\left(j_{s}\right)
\end{aligned}
$$

and

$$
\lim _{N \rightarrow \infty} N / k_{N}=\lim _{N \rightarrow \infty} A\left(k_{N} ; j_{1}, a_{n}^{(1)} ; \cdots ; j_{t}, a_{n}^{(t)}\right) / k_{N}=\left\|A\left(a_{n}^{(1)} \equiv j_{1}, \cdots, a_{n}^{(t)} \equiv j_{t}\right)\right\|
$$

$$
=\alpha_{1}\left(j_{1}\right) \cdots \alpha_{t}\left(j_{t}\right)
$$

Now write

$$
\frac{A\left(N ; j_{t+1}, a_{k_{n}}^{(t+1)} ; \cdots ; j_{s}, a_{k_{n}}^{(s)}\right)}{N}=\frac{A\left(k_{N} ; j_{1}, a_{n}^{(1)} ; \cdots ; j_{s}, a_{n}^{(s)}\right)}{k_{N}} \cdot \frac{k_{N}}{N}
$$

and letting $N \rightarrow \infty$, we arrive at

$$
\begin{align*}
\left\|A\left(a_{k_{n}}^{(t+1)} \equiv j_{t+1}, \cdots, a_{k_{n}}^{(s)} \equiv j_{s}\right)\right\| & =\alpha_{t+1}\left(j_{t+1}\right) \cdots \alpha_{s}\left(j_{s}\right) \tag{5}\\
& =\left\|A\left(a_{n}^{(t+1)} \equiv j_{t+1}, \cdots, a_{n}^{(s)} \equiv j_{s}\right)\right\| .
\end{align*}
$$

This proves the first result. By keeping one $j_{i}, t+1 \leq i \leq s$, in (5) fixed and summing over all the other $j_{p}, t+1 \leq p \leq s, p \neq i$, from 0 to $m-1$, we arrive at $\left\|A\left(\alpha_{k_{n}}^{(i)} \equiv j_{i}\right)\right\|=\alpha_{i}\left(j_{i}\right)$ for $t+1 \leq i \leq s$. Therefore (5) shows also that the sequences $\left(\alpha_{k_{n}}^{(t+1)}\right), \cdots,\left(a_{k_{n}}^{(s)}\right)$ are independent $\bmod m$.

References

[1] L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. John Wiley and Sons, New York (1974).
[2] L. Kuipers and J.-S. Shiue: Asymptotic distribution modulo m of sequences of integers and the notion of independence. Atti Accad. Naz. Lincei (to appear).
[3] H. Niederreiter: On a class of sequences of lattice points. J. Number Th., 4, 477-502 (1972).
[4] I. Niven: Uniform distribution of sequences of integers. Trans. Amer. Math. Soc., 98, 52-61 (1961).

[^0]: *) Department of Mathematics, Southern Illinois University, Carbondale, Illinois, U. S. A.
 **) The Institute for Advanced Study, Princeton, New Jersey, U. S. A. The research of the second author was supported by NSF grant GP-36418X1.

