57. Asymptotic Distribution mod m and Independence of Sequences of Integers. I

By Lauwerens KUIPERS*' and Harald NIEDERREITER**'

(Comm. by Kenjiro SHODA, M. J. A., April 18, 1974)

Let $m \ge 2$ be a fixed modulus. Let (a_n) , $n=1,2,\cdots$, be a given sequence of integers. For integers $N \ge 1$ and j, let $A(N; j, a_n)$ be the number of $n, 1 \le n \le N$, with $a_n \equiv j \pmod{m}$. If

$$\alpha(j) = \lim_{N \to \infty} A(N; j, a_n) / N$$

exists for each j, then (a_n) is said to have α as its asymptotic distribution function mod m (abbreviated a.d.f. mod m). We denote $\alpha(j)$ also by $||A(a_n \equiv j)||$. Of course, it suffices to restrict j to a complete residue system mod m. If $\alpha(j)=1/m$ for $0 \le j \le m$, then (a_n) is uniformly distributed mod m (abbreviated u.d. mod m) in the sense of Niven [4]. The numbers in brackets refer to the bibliography at the end of the second part of this paper.

If (b_n) is another sequence of integers, then for $N \ge 1$ and $j, k \in \mathbb{Z}$ we define $A(N; j, a_n; k, b_n)$ as the number of $n, 1 \le n \le N$, such that simultaneously $a_n \equiv j \pmod{m}$ and $b_n \equiv k \pmod{m}$. We write $(1) \qquad ||A(a_n \equiv j, b_n \equiv k)|| = \lim_{N \to \infty} A(N; j, a_n; k, b_n)/N$

in case the limit exists. We note that if the limits (1) exist for all j, $k=0, 1, \dots, m-1$, then both (a_n) and (b_n) have an a.d.f. mod m. The following notion was introduced by Kuipers and Shiue [2].

Definition 1. The sequences (a_n) and (b_n) are called independent mod *m* if for all $j, k=0, 1, \dots, m-1$ the limits $||A(a_n \equiv j, b_n \equiv k)||$ exist and we have

 $||A(a_n \equiv j, b_n \equiv k)|| = ||(A(a_n \equiv j))|| \cdot ||A(b_n \equiv k)||.$

Example 1. Let (c_n) be a sequence of integers that is u.d. mod m^2 . Then writing $c_n \equiv a_n + mb_n \pmod{m^2}$, where $0 \leq a_n < m$ and $0 \leq b_n < m$, we obtain two sequences (a_n) and (b_n) that are independent mod m and u.d. mod m. See [2] and [1, Ch. 5, Example 1.5].

Example 2. Let α_1, α_2 be two real numbers such that $1, \alpha_1, \alpha_2$ are linearly independent over the rationals; or, more generally, let α_1, α_2 be two real numbers satisfying the condition of Theorem A in [3]. Then, according to this theorem, the sequence $(([n\alpha_1], [n\alpha_2])), n=1, 2, \cdots$, of lattice points is u.d. in Z^2 (here [x] denotes the integral part of

^{*)} Department of Mathematics, Southern Illinois University, Carbondale, Illinois, U. S. A.

^{**&#}x27; The Institute for Advanced Study, Princeton, New Jersey, U. S. A. The research of the second author was supported by NSF grant GP-36418X1.

x). It follows easily that the sequences $([n\alpha_1])$ and $([n\alpha_2])$ are u.d. mod m and independent mod m for all $m \ge 2$.

A method of constructing for each given sequence (a_n) possessing an a.d.f. mod m a sequence (b_n) with prescribed a.d.f. mod m such that (a_n) and (b_n) are independent mod m was communicated to us by M. B. Nathanson. His paper will appear in due course.

A criterion for independence $\mod m$ in terms of exponential sums has already been established (see [2] and [1, Ch. 5, Sect. 1]). The following criterion is of a different type.

Theorem 1. The sequences (a_n) and (b_n) are independent mod m if and only if for all $h, k \in \mathbb{Z}$ the sequence $(ha_n + kb_n), n = 1, 2, \dots$, has an a.d.f. mod m given by

(2)
$$||A(ha_n+kb_n\equiv j)|| = \sum_{\substack{r,s=0\\hr+ks\equiv j \pmod{m}}}^{m-1} ||A(a_n\equiv r)|| \cdot ||A(b_n\equiv s)||$$

for all $j \in \mathbb{Z}$.

Proof. Suppose (a_n) and (b_n) are independent mod m. We have

$$A(N; j, ha_n + kb_n) = \sum_{\substack{r,s=0\\h\,r + ks \equiv j \pmod{m}}}^{m-1} A(N; r, a_n; s, b_n),$$

and so, by dividing by N and letting $N \rightarrow \infty$, we arrive at

$$\|A(ha_{n}+kb_{n}\equiv j)\| = \sum_{\substack{r,s=0\\hr+ks\equiv j \pmod{m}}}^{m-1} \|A(a_{n}\equiv r, b_{n}\equiv s)\| \\ = \sum_{\substack{r,s=0\\hr+ks\equiv j \pmod{m}}}^{m-1} \|A(a_{n}\equiv r)\|\cdot\|A(b_{n}\equiv s)\|.$$

Conversely, suppose that (2) is satisfied, and choose integers p, q with $0 \le p, q \le m$. We note that for $x, y \in \mathbb{Z}$ the expression

$$\frac{1}{m^2}\sum_{h,k=0}^{m-1}\exp\left(-\frac{2\pi i}{m}(hp+kq)\right)\exp\left(-\frac{2\pi i}{m}(hx+ky)\right)$$

is 1 precisely if $x \equiv p \pmod{m}$ and $y \equiv q \pmod{m}$, and 0 otherwise. Therefore,

$$\begin{aligned} A(N; p, a_n; q, b_n) \\ &= \frac{1}{m^2} \sum_{\substack{h,k=0}}^{m-1} \exp\left(-\frac{2\pi i}{m} (hp + kq)\right) \sum_{n=1}^{N} \exp\left(\frac{2\pi i}{m} (ha_n + kb_n)\right) \\ &= \frac{1}{m^2} \sum_{\substack{h,k=0}}^{m-1} \exp\left(-\frac{2\pi i}{m} (hp + kq)\right) \sum_{\substack{j=0}}^{m-1} \exp\left(\frac{2\pi i}{m} j\right) A(N; j, ha_n + kb_n) \end{aligned}$$

for all $N \ge 1$. Dividing by N, letting $N \to \infty$, and using (2), we obtain $||A(a_n \equiv p, b_n \equiv q)||$

$$= \frac{1}{m^2} \sum_{h,k=0}^{m-1} \exp\left(-\frac{2\pi i}{m} (hp+kq)\right) \sum_{j=0}^{m-1} \exp\left(\frac{2\pi i}{m} j\right) \|A(ha_n+kb_n\equiv j)\|$$

$$= \frac{1}{m^2} \sum_{h,k=0}^{m-1} \exp\left(-\frac{2\pi i}{m} (hp+kq)\right) \sum_{j=0}^{m-1} \exp\left(\frac{2\pi i}{m} j\right)$$

$$\times \sum_{\substack{r,s=0\\hr+ks\equiv j \,(\text{mod }m)}}^{m-1} \|A(a_n\equiv r)\| \cdot \|A(b_n\equiv s)\|$$

No. 4]

$$= \frac{1}{m^2} \sum_{r,s=0}^{m-1} \|A(a_n \equiv r)\| \cdot \|A(b_n \equiv s)\| \sum_{j=0}^{m-1} \exp\left(\frac{2\pi i}{m} j\right) \\ \times \sum_{\substack{h,r+k \equiv j \pmod{m}}}^{m-1} \exp\left(-\frac{2\pi i}{m} (hp+kq)\right)^{-1}$$

Now

$$\begin{split} \frac{1}{m^2} & \sum_{j=0}^{m-1} \exp\left(\frac{2\pi i}{m} j\right) \sum_{\substack{h,k=0\\hr+ks\equiv j \pmod{m}}}^{m-1} \exp\left(-\frac{2\pi i}{m} (hp+kq)\right) \\ &= \frac{1}{m^2} \sum_{j=0}^{m-1} \sum_{\substack{h,k=0\\hr+ks\equiv j \pmod{m}}}^{m-1} \exp\left(-\frac{2\pi i}{m} (hp+kq-hr-ks)\right) \\ &= \frac{1}{m^2} \sum_{h,k=0}^{m-1} \exp\left(\frac{2\pi i}{m} h(r-p)\right) \exp\left(\frac{2\pi i}{m} h(s-q)\right), \end{split}$$

and the last sum is 1 precisely if r=p and s=q, and 0 otherwise. This completes the proof of Theorem 1.

The necessary part of Theorem 1 can be improved as follows. Let $f: \mathbb{Z}^2 \to \mathbb{Z}$ be a congruence-preserving function mod m, i.e., $f(i_1, i_2) = f(j_1, j_2)$ whenever $i_1 \equiv j_1 \pmod{m}$ and $i_2 \equiv j_2 \pmod{m}$. Then, if (a_n) and (b_n) are independent mod m, the sequence $(f(a_n, b_n)), n=1, 2, \cdots$, has an a.d.f. mod m. For the proof, one simply notes that

$$A(N; j, f(a_n, b_n)) = \sum_{\substack{r,s=0\\f(r,s) \equiv j \pmod{m}}}^{m-1} A(N; r, a_n; s, b_n),$$

so that one obtains the desired conclusion by dividing by N and letting $N \rightarrow \infty$.

Theorem 2. Let (a_n) and (b_n) be independent mod m, and let h, $k \in \mathbb{Z}$. Then the sequences (ha_n) , $n=1,2,\cdots$, and (kb_n) , $n=1,2,\cdots$, are independent mod m.

Proof. Set c=g.c.d.(h, m) and d=g.c.d.(k, m). Choose two integers r and s. If $c \nmid r$ or $d \nmid s$, then $||A(ha_n \equiv r, kb_n \equiv s)|| = ||A(ha_n \equiv r)|| \cdot ||A(kb_n \equiv s)||$ holds since both sides are equal to zero. If both $c \mid r$ and $d \mid s$, let r_1, \dots, r_c and s_1, \dots, s_d be the solutions in the least residue system mod m of the congruences $hx \equiv r \pmod{m}$ and $ky \equiv s \pmod{m}$, respectively. Then,

$$\begin{split} \|A(ha_n \equiv r, kb_n \equiv s)\| &= \sum_{i=1}^c \sum_{j=1}^d \|A(a_n \equiv r_i, b_n \equiv s_j)\| \\ &= \sum_{i=1}^c \sum_{j=1}^d \|A(a_n \equiv r_i)\| \cdot \|A(b_n \equiv s_j)\| \\ &= \left(\sum_{i=1}^c \|A(a_n \equiv r_i)\|\right) \left(\sum_{j=1}^d \|A(b_n \equiv s_j)\|\right) \\ &= \|A(ha_n \equiv r)\| \cdot \|A(kb_n \equiv s)\|. \end{split}$$

Theorem 3. Suppose (a_n) has α as its a.d.f. mod m. Then (a_n) and (a_n) are independent mod m if and only if $\alpha(j)=1$ for some j.

Proof. If $0 < \alpha(j) < 1$ for some j, then $||A(a_n \equiv j, a_n \equiv j)|| = \alpha(j) \neq \alpha^2(j)$ = $||A(a_n \equiv j)|| \cdot ||A(a_n \equiv j)||$. If $\alpha(j) = 1$ for some j, then for $r, s, \in \mathbb{Z}$ with

258

 $0 \le r$, s < m and $r \ne s$ we have

$$A(a_n \equiv r, a_n \equiv s) \| = 0 = \|A(a_n \equiv r)\| \cdot \|A(a_n \equiv s)\|,$$

and also

 $\|A(a_n \equiv r, a_n \equiv r)\| = \alpha(r) = \alpha^2(r) = \|A(a_n \equiv r)\| \cdot \|A(a_n \equiv r)\|,$ since $\alpha(r) = 0$ or 1.

Theorem 4. Suppose (a_n) has α as its a.d.f. mod m. Then (a_n) is independent mod m of any (b_n) having an a.d.f. mod m if and only if $\alpha(j)=1$ for some $j=0, 1, \dots, m-1$.

Proof. If $0 \le \alpha(j) \le 1$ for some j, then (a_n) and (a_n) are not independent mod m by Theorem 3. Now suppose that $\alpha(j)=1$ for some $j = 0, 1, \dots, m-1$, and let (b_n) have an a.d.f. mod m. Then for $r, s \in \mathbb{Z}$ with $0 \le r, s \le m$ and $r \ne j$ we have $A(N; r, a_n; s, b_n) \le A(N; r, a_n)$ for all $N \ge 1$, so that $0 = ||A(a_n \equiv r, b_n \equiv s)|| = ||A(a_n \equiv r)|| \cdot ||A(b_n \equiv s)||$. Furthermore, we have

$$\frac{A(N; s, b_n)}{N} - \sum_{\substack{k=0\\k\neq j}}^{m-1} \frac{A(N; k, a_n)}{N} \leq \frac{A(N; j, a_n; s, b_n)}{N} \leq \frac{A(N; s, b_n)}{N}$$

for all $N \ge 1$, hence

 $||A(a_n \equiv j, b_n \equiv s)|| = ||A(b_n \equiv s)|| = ||A(a_n \equiv j)|| \cdot ||A(b_n \equiv s)||.$ Thus (a_n) and (b_n) are independent mod m.

Definition 2. A pair of sequences (c_n) , (d_n) of integers is called admissible mod m if for any sequences (a_n) and (b_n) that are independent mod m the sequences (a_n+c_n) and (b_n+d_n) are also independent mod m.

Theorem 5. The pair of sequences $(c_n), (d_n)$ is admissible mod m if and only if each of (c_n) and (d_n) has an a.d.f. mod m (denoted, respectively, by γ and δ , say) and $\gamma(j_1) = \delta(j_2) = 1$ for some integers j_1 and j_2 .

Proof. Let $(c_n), (d_n)$ be admissible mod m. Let (0) denote the constant sequence $0, 0, \cdots$. Then, since (0) and (0) are independent mod m by Theorem 3, the sequences (c_n) and (d_n) are independent mod m. In particular, each of (c_n) and (d_n) has an a.d.f. mod m. Furthermore, by Theorem 1, (c_n-d_n) has an a.d.f. mod m, and by Theorem 4 the sequences (0) and (c_n-d_n) are independent mod m. Since $(c_n), (d_n)$ are admissible mod m, it follows that (c_n) and (c_n) are independent mod m, and so $\gamma(j_1)=1$ for some j_1 by Theorem 3. The corresponding property of δ follows in a similar way.

Now suppose that (d_n) has δ as its a.d.f. mod m and that $\delta(j)=1$ for some j. Let (a_n) and (b_n) be independent mod m with α and β as a.d.f. mod m, respectively. By Theorem 4, (b_n) and (d_n) are independent mod m, so that according to Theorem 1 the sequence (b_n+d_n) has an a.d.f. mod m given by $\varepsilon(i)=\beta(i-j)$ for all $i \in \mathbb{Z}$. We claim that (a_n) and (b_n+d_n) are independent mod m. We have to show by Theorem 1 that for all $h, k \in \mathbb{Z}$ the sequence $(ha_n+kb_n+kd_n)$ has an a.d.f. mod m

No. 4]

given by

$$(3) ||A(ha_n+kb_n+kd_n\equiv p)|| = \sum_{\substack{r,s=0\\hr+ks\equiv p \pmod{m}}}^{m-1} ||A(a_n\equiv r)|| \cdot ||A(b_n+d_n\equiv s)||$$

for all $p \in \mathbb{Z}$. Since $(ha_n + kb_n)$ and (d_n) are independent mod m by Theorem 4, we obtain by applying Theorem 1 twice:

$$\|A(ha_n+kb_n+kd_n\equiv p)\|=\|A(ha_n+kb_n\equiv p-kj)\|$$
$$=\sum_{\substack{r,s=0\\hr+ks\equiv p-kj\pmod{m}}}^{m-1}\alpha(r)\beta(s).$$

On the other hand, the right-hand side of (3) is equal to

$$\sum_{\substack{r,s=0\\hr+ks\equiv p\pmod{m}}}^{m-1} \alpha(r)\varepsilon(s) = \sum_{\substack{r,s=0\\hr+ks\equiv p\pmod{m}}}^{m-1} \alpha(r)\beta(s-j) = \sum_{\substack{r,s=0\\hr+ks\equiv p-kj\pmod{m}}}^{m-1} \alpha(r)\beta(s).$$

Thus (a_n) and (b_n+d_n) are independent mod m. Since (c_n) enjoys a property similar to that of (d_n) , it follows by the same argument that (a_n+c_n) and (b_n+d_n) are independent mod m.

Theorem 6. Let (a_n) and (b_n) be independent mod m and u.d.mod m, and let $h, k \in \mathbb{Z}$ with g.c.d. (h, k, m) = 1. Then the sequence $(ha_n + kb_n), n = 1, 2, \dots, is u.d. \mod m$.

Proof. By (2), it suffices to show that for each $j=0, 1, \dots, m-1$, the congruence $hr+ks\equiv j \pmod{m}$ has exactly m ordered pairs (r,s), $0\leq r, s\leq m$, as solutions. Since the condition g.c.d. (h, k, m)=1 implies that each of these congruences has a solution, and since each solution (r,s) of $hr+ks\equiv j \pmod{m}$ is of the form $(r,s)=(r_0+r_1,s_0+s_1)$, where (r_0,s_0) is a specific solution of $hr+ks\equiv j \pmod{m}$ and (r_1,s_1) is an arbitrary solution of $hr+ks\equiv 0 \pmod{m}$, it follows that all the congruences $hr+ks\equiv j \pmod{m}$, $j=0,1,\dots,m-1$, have the same number of solutions, and so each of them has m solutions.

Obviously, if g.c.d. (h, k, m) > 1, then the sequence $(ha_n + kb_n)$, $n = 1, 2, \cdots$, cannot be u.d. mod m, although it will still have an a.d.f. mod m, according to Theorem 1. We note that if (a_n) and (b_n) are independent mod m and (a_n) is u.d. mod m, then $(ha_n + kb_n)$, $n = 1, 2, \cdots$, is u.d. mod m whenever g.c.d. (h, m) = 1 (see [1, Ch. 5, Example 1.4]). The latter condition cannot be relaxed to g.c.d. (h, k, m) = 1: choose $(b_n) = (0)$, and let $h, k \in \mathbb{Z}$ with g.c.d. (h, m) > 1 and g.c.d. (k, m) = 1; then (a_n) and (b_n) are independent mod m by Theorem 4, but $(ha_n + kb_n) = (ha_n)$, which is not u.d. mod m. One may also establish the following criterion. Suppose the sequence (a_n) has an a.d.f. mod m; then (a_n) is u.d. mod m if and only if the sequence $(a_n + b_n)$ is u.d. mod m. The necessity follows from a remark made above. As to the sufficiency, one chooses $(b_n) = (0)$, which is independent mod m of (a_n) by Theorem 4.

(References can be found at the end of the second Note.)

[Vol. 50,

260