# 57. Asymptotic Distribution $\bmod m$ and Independence of Sequences of Integers. I 

By Lauwerens Kuipers*) and Harald Niederreiter**)

(Comm. by Kenjiro Shoda, m. J. A., April 18, 1974)

Let $m \geq 2$ be a fixed modulus. Let $\left(a_{n}\right), n=1,2, \cdots$, be a given sequence of integers. For integers $N \geq 1$ and $j$, let $A\left(N ; j, a_{n}\right)$ be the number of $n, 1 \leq n \leq N$, with $a_{n} \equiv j(\bmod m)$. If

$$
\alpha(j)=\lim _{N \rightarrow \infty} A\left(N ; j, a_{n}\right) / N
$$

exists for each $j$, then $\left(a_{n}\right)$ is said to have $\alpha$ as its asymptotic distribution function $\bmod m($ abbreviated a.d.f. $\bmod m)$. We denote $\alpha(j)$ also by $\left\|A\left(a_{n} \equiv j\right)\right\|$. Of course, it suffices to restrict $j$ to a complete residue system $\bmod m$. If $\alpha(j)=1 / m$ for $0 \leq j<m$, then $\left(a_{n}\right)$ is uniformly distributed $\bmod m($ abbreviated u.d. $\bmod m)$ in the sense of Niven [4]. The numbers in brackets refer to the bibliography at the end of the second part of this paper.

If ( $b_{n}$ ) is another sequence of integers, then for $N \geq 1$ and $j, k \in \boldsymbol{Z}$ we define $A\left(N ; j, a_{n} ; k, b_{n}\right)$ as the number of $n, 1 \leq n \leq N$, such that simultaneously $a_{n} \equiv j(\bmod m)$ and $b_{n} \equiv k(\bmod m)$. We write (1) $\quad\left\|A\left(a_{n} \equiv j, b_{n} \equiv k\right)\right\|=\lim _{N \rightarrow \infty} A\left(N ; j, a_{n} ; k, b_{n}\right) / N$ in case the limit exists. We note that if the limits (1) exist for all $j$, $k=0,1, \cdots, m-1$, then both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have an a.d.f. $\bmod m$. The following notion was introduced by Kuipers and Shiue [2].

Definition 1. The sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are called independent $\bmod m$ if for all $j, k=0,1, \cdots, m-1$ the limits $\left\|A\left(a_{n} \equiv j, b_{n} \equiv k\right)\right\|$ exist and we have

$$
\left\|A\left(a_{n} \equiv j, b_{n} \equiv k\right)\right\|=\|\left(A\left(a_{n} \equiv j\right)\|\cdot\| A\left(b_{n} \equiv k\right) \| .\right.
$$

Example 1. Let $\left(c_{n}\right)$ be a sequence of integers that is u.d. $\bmod m^{2}$. Then writing $c_{n} \equiv a_{n}+m b_{n}\left(\bmod m^{2}\right)$, where $0 \leq a_{n}<m$ and $0 \leq b_{n}<m$, we obtain two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ that are independent $\bmod m$ and u.d. $\bmod m$. See [2] and [1, Ch. 5, Example 1.5].

Example 2. Let $\alpha_{1}, \alpha_{2}$ be two real numbers such that $1, \alpha_{1}, \alpha_{2}$ are linearly independent over the rationals; or, more generally, let $\alpha_{1}, \alpha_{2}$ be two real numbers satisfying the condition of Theorem A in [3]. Then, according to this theorem, the sequence (([n $\left.\left.\left.\alpha_{1}\right],\left[n \alpha_{2}\right]\right)\right), n=1,2$, $\cdots$, of lattice points is u.d. in $\boldsymbol{Z}^{2}$ (here $[x]$ denotes the integral part of

[^0]$x$ ). It follows easily that the sequences ( $\left[n \alpha_{1}\right]$ ) and ( $\left[n \alpha_{2}\right]$ ) are u.d. $\bmod m$ and independent $\bmod m$ for all $m \geq 2$.

A method of constructing for each given sequence ( $a_{n}$ ) possessing an a.d.f. $\bmod m$ a sequence $\left(b_{n}\right)$ with prescribed a.d.f. $\bmod m$ such that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$ was communicated to us by M. B. Nathanson. His paper will appear in due course.

A criterion for independence $\bmod m$ in terms of exponential sums has already been established (see [2] and [1, Ch. 5, Sect. 1]). The following criterion is of a different type.

Theorem 1. The sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$ if and only if for all $h, k \in Z$ the sequence $\left(h a_{n}+k b_{n}\right), n=1,2, \cdots$, has an a.d.f. $\bmod m$ given by

$$
\begin{equation*}
\left\|A\left(h a_{n}+k b_{n} \equiv j\right)\right\|=\sum_{\substack{r, s=0 \\ h r+k \equiv j \bmod m)}}^{m-1}\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n} \equiv s\right)\right\| \tag{2}
\end{equation*}
$$

for all $j \in Z$.
Proof. Suppose $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$. We have

$$
A\left(N ; j, h a_{n}+k b_{n}\right)=\sum_{\substack{r, s=0 \\ h r+k s=j(\bmod m)}}^{m-1} A\left(N ; r, a_{n} ; s, b_{n}\right),
$$

and so, by dividing by $N$ and letting $N \rightarrow \infty$, we arrive at

Conversely, suppose that (2) is satisfied, and choose integers $p, q$ with $0 \leq p, q<m$. We note that for $x, y \in \boldsymbol{Z}$ the expression

$$
\frac{1}{m^{2}} \sum_{h, k=0}^{m-1} \exp \left(-\frac{2 \pi i}{m}(h p+k q)\right) \exp \left(\frac{2 \pi i}{m}(h x+k y)\right)
$$

is 1 precisely if $x \equiv p(\bmod m)$ and $y \equiv q(\bmod m)$, and 0 otherwise. Therefore,

$$
\begin{aligned}
& A\left(N ; p, a_{n} ; q, b_{n}\right) \\
& \quad=\frac{1}{m^{2}} \sum_{n, k=0}^{m-1} \exp \left(-\frac{2 \pi i}{m}(h p+k q)\right) \sum_{n=1}^{N} \exp \left(\frac{2 \pi i}{m}\left(h a_{n}+k b_{n}\right)\right) \\
& \quad=\frac{1}{m^{2}} \sum_{n, k=0}^{m-1} \exp \left(-\frac{2 \pi i}{m}(h p+k q)\right) \sum_{j=0}^{m-1} \exp \left(\frac{2 \pi i}{m} j\right) A\left(N ; j, h a_{n}+k b_{n}\right)
\end{aligned}
$$

for all $N \geq 1$. Dividing by $N$, letting $N \rightarrow \infty$, and using (2), we obtain

$$
\left\|A\left(a_{n} \equiv p, b_{n} \equiv q\right)\right\|
$$

$$
=\frac{1}{m^{2}} \sum_{h, k=0}^{m-1} \exp \left(-\frac{2 \pi i}{m}(h p+k q)\right) \sum_{j=0}^{m-1} \exp \left(\frac{2 \pi i}{m} j\right)\left\|A\left(h a_{n}+k b_{n} \equiv j\right)\right\|
$$

$$
=\frac{1}{m^{2}} \sum_{h, k=0}^{m-1} \exp \left(-\frac{2 \pi i}{m}(h p+k q)\right) \sum_{j=0}^{m-1} \exp \left(\frac{2 \pi i}{m} j\right)
$$

$$
\times \sum_{\substack{r, s=0 \\ h r+s=j(\bmod m)}}^{m-1}\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n} \equiv s\right)\right\|
$$

$$
\begin{aligned}
& \left\|A\left(h a_{n}+k b_{n} \equiv j\right)\right\|=\sum_{\substack{r, s=0 \\
h r+k s \equiv j(\bmod m)}}^{m-1}\left\|A\left(a_{n} \equiv r, b_{n} \equiv s\right)\right\| \\
& =\sum_{\substack{r, s=0 \\
h r+k s=(\bmod m)}}^{m-1}\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n} \equiv s\right)\right\| .
\end{aligned}
$$

$$
\begin{aligned}
=\frac{1}{m^{2}} \sum_{r, s=0}^{m-1}\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n} \equiv s\right)\right\| & \sum_{j=0}^{m-1} \exp \left(\frac{2 \pi i}{m} j\right) \\
& \times \sum_{\substack{h, k=0 \\
h r+k s=j(\bmod m)}}^{m-1} \exp \left(-\frac{2 \pi i}{m}(h p+k q)\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \frac{1}{m^{2}} \sum_{j=0}^{m-1} \exp \left(\frac{2 \pi i}{m} j\right) \sum_{\substack{h, k=0 \\
h r+k s \equiv j=\bmod m)}}^{m-1} \exp \left(-\frac{2 \pi i}{m}(h p+k q)\right) \\
& \quad=\frac{1}{m^{2}} \sum_{j=0}^{m-1} \sum_{\substack{h, k=0 \\
m-1}}^{l i m p}\left(-\frac{2 \pi i}{m}(h p+k q-h r-k s)\right) \\
& \quad=\frac{1}{m^{2}} \sum_{h, k=0}^{m-1} \exp \left(\frac{2 \pi i}{m} h(r-p)\right) \exp \left(\frac{2 \pi i}{m} h(s-q)\right),
\end{aligned}
$$

and the last sum is 1 precisely if $r=p$ and $s=q$, and 0 otherwise. This completes the proof of Theorem 1.

The necessary part of Theorem 1 can be improved as follows. Let $f: \boldsymbol{Z}^{2} \rightarrow \boldsymbol{Z}$ be a congruence-preserving function $\bmod m$, i.e., $f\left(i_{1}, i_{2}\right)$ $=f\left(j_{1}, j_{2}\right)$ whenever $i_{1} \equiv j_{1}(\bmod m)$ and $i_{2} \equiv j_{2}(\bmod m)$. Then, if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$, the sequence $\left(f\left(a_{n}, b_{n}\right)\right), n=1,2, \cdots$, has an a.d.f. $\bmod m$. For the proof, one simply notes that

$$
A\left(N ; j, f\left(a_{n}, b_{n}\right)\right)=\sum_{\substack{n(r, s)=j=0 \\ \equiv j=j(\bmod m)}}^{m-1} A\left(N ; r, a_{n} ; s, b_{n}\right),
$$

so that one obtains the desired conclusion by dividing by $N$ and letting $N \rightarrow \infty$.

Theorem 2. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be independent $\bmod m$, and let $h$, $k \in Z$. Then the sequences $\left(h a_{n}\right), n=1,2, \cdots$, and $\left(k b_{n}\right), n=1,2, \cdots$, are independent $\bmod m$.

Proof. Set $c=$ g.c.d. $(h, m)$ and $d=$ g.c.d. $(k, m)$. Choose two integers $r$ and $s$. If $c \nmid r$ or $d \nmid s$, then $\left\|A\left(h a_{n} \equiv r, k b_{n} \equiv s\right)\right\|=\left\|A\left(h a_{n} \equiv r\right)\right\|$ $\cdot\left\|A\left(k b_{n} \equiv s\right)\right\|$ holds since both sides are equal to zero. If both $c \mid r$ and $d \mid s$, let $r_{1}, \cdots, r_{c}$ and $s_{1}, \cdots, s_{d}$ be the solutions in the least residue system $\bmod m$ of the congruences $h x \equiv r(\bmod m)$ and $k y \equiv s(\bmod m)$, respectively. Then,

$$
\begin{aligned}
\left\|A\left(h \alpha_{n} \equiv r, k b_{n} \equiv s\right)\right\| & =\sum_{i=1}^{c} \sum_{j=1}^{d}\left\|A\left(a_{n} \equiv r_{i}, b_{n} \equiv s_{j}\right)\right\| \\
& =\sum_{i=1}^{c} \sum_{j=1}^{d}\left\|A\left(a_{n} \equiv r_{i}\right)\right\| \cdot\left\|A\left(b_{n} \equiv s_{j}\right)\right\| \\
& =\left(\sum_{i=1}^{c}\left\|A\left(a_{n} \equiv r_{i}\right)\right\|\right)\left(\sum_{j=1}^{d}\left\|A\left(b_{n} \equiv s_{j}\right)\right\|\right) \\
& =\left\|A\left(h a_{n} \equiv r\right)\right\| \cdot\left\|A\left(k b_{n} \equiv s\right)\right\| .
\end{aligned}
$$

Theorem 3. Suppose $\left(a_{n}\right)$ has $\alpha$ as its a.d.f. $\bmod m$. Then $\left(a_{n}\right)$ and $\left(a_{n}\right)$ are independent $\bmod m$ if and only if $\alpha(j)=1$ for some $j$.

Proof. If $0<\alpha(j)<1$ for some $j$, then $\left\|A\left(a_{n} \equiv j, a_{n} \equiv j\right)\right\|=\alpha(j) \neq \alpha^{2}(j)$ $=\left\|A\left(a_{n} \equiv j\right)\right\| \cdot\left\|A\left(a_{n} \equiv j\right)\right\|$. If $\alpha(j)=1$ for some $j$, then for $r, s, \in \boldsymbol{Z}$ with
$0 \leq r, s<m$ and $r \neq s$ we have

$$
\left\|A\left(a_{n} \equiv r, a_{n} \equiv s\right)\right\|=0=\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(a_{n} \equiv s\right)\right\|,
$$

and also

$$
\left\|A\left(a_{n} \equiv r, a_{n} \equiv r\right)\right\|=\alpha(r)=\alpha^{2}(r)=\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(a_{n} \equiv r\right)\right\|,
$$

since $\alpha(r)=0$ or 1 .
Theorem 4. Suppose $\left(a_{n}\right)$ has $\alpha$ as its a.d.f. $\bmod m$. Then $\left(a_{n}\right)$ is independent $\bmod m$ of any $\left(b_{n}\right)$ having an a.d.f. $\bmod m$ if and only if $\alpha(j)=1$ for some $j=0,1, \cdots, m-1$.

Proof. If $0<\alpha(j)<1$ for some $j$, then $\left(a_{n}\right)$ and $\left(a_{n}\right)$ are not independent $\bmod m$ by Theorem 3. Now suppose that $\alpha(j)=1$ for some $j$ $=0,1, \cdots, m-1$, and let $\left(b_{n}\right)$ have an a.d.f. $\bmod m$. Then for $r, s \in \boldsymbol{Z}$ with $0 \leq r, s<m$ and $r \neq j$ we have $A\left(N ; r, a_{n} ; s, b_{n}\right) \leq A\left(N ; r, a_{n}\right)$ for all $N \geq 1$, so that $0=\left\|A\left(a_{n} \equiv r, b_{n} \equiv s\right)\right\|=\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n} \equiv s\right)\right\|$. Furthermore, we have

$$
\frac{A\left(N ; s, b_{n}\right)}{N}-\sum_{\substack{k=0 \\ k \neq j}}^{m-1} \frac{A\left(N ; k, a_{n}\right)}{N} \leq \frac{A\left(N ; j, a_{n} ; s, b_{n}\right)}{N} \leq \frac{A\left(N ; s, b_{n}\right)}{N}
$$

for all $N \geq 1$, hence

$$
\left\|\bar{A}\left(a_{n} \equiv j, b_{n} \equiv s\right)\right\|=\left\|A\left(b_{n} \equiv s\right)\right\|=\left\|A\left(a_{n} \equiv j\right)\right\| \cdot\left\|A\left(b_{n} \equiv s\right)\right\| .
$$

Thus $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$.
Definition 2. A pair of sequences $\left(c_{n}\right)$, $\left(d_{n}\right)$ of integers is called admissible $\bmod m$ if for any sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ that are independent $\bmod m$ the sequences $\left(a_{n}+c_{n}\right)$ and $\left(b_{n}+d_{n}\right)$ are also independent $\bmod m$.

Theorem 5. The pair of sequences $\left(c_{n}\right),\left(d_{n}\right)$ is admissible $\bmod m$ if and only if each of $\left(c_{n}\right)$ and $\left(d_{n}\right)$ has an a.d.f. $\bmod m$ (denoted, respectively, by $\gamma$ and $\delta$, say) and $\gamma\left(j_{1}\right)=\delta\left(j_{2}\right)=1$ for some integers $j_{1}$ and $j_{2}$.

Proof. Let $\left(c_{n}\right),\left(d_{n}\right)$ be admissible $\bmod m$. Let ( 0 ) denote the constant sequence $0,0, \cdots$. Then, since ( 0 ) and ( 0 ) are independent $\bmod m$ by Theorem 3 , the sequences $\left(c_{n}\right)$ and $\left(d_{n}\right)$ are independent $\bmod m$. In particular, each of $\left(c_{n}\right)$ and $\left(d_{n}\right)$ has an a.d.f. $\bmod m$. Furthermore, by Theorem $1,\left(c_{n}-d_{n}\right)$ has an a.d.f. $\bmod m$, and by Theorem 4 the sequences $(0)$ and $\left(c_{n}-d_{n}\right)$ are independent $\bmod m$. Since $\left(c_{n}\right),\left(d_{n}\right)$ are admissible $\bmod m$, it follows that $\left(c_{n}\right)$ and $\left(c_{n}\right)$ are independent $\bmod m$, and so $\gamma\left(j_{1}\right)=1$ for some $j_{1}$ by Theorem 3. The corresponding property of $\delta$ follows in a similar way.

Now suppose that $\left(d_{n}\right)$ has $\delta$ as its a.d.f. $\bmod m$ and that $\delta(j)=1$ for some $j$. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be independent $\bmod m$ with $\alpha$ and $\beta$ as a.d.f. $\bmod m$, respectively. By Theorem $4,\left(b_{n}\right)$ and $\left(d_{n}\right)$ are independent $\bmod m$, so that according to Theorem 1 the sequence $\left(b_{n}+d_{n}\right)$ has an a.d.f. $\bmod m$ given by $\varepsilon(i)=\beta(i-j)$ for all $i \in Z$. We claim that $\left(a_{n}\right)$ and $\left(b_{n}+d_{n}\right)$ are independent $\bmod m$. We have to show by Theorem 1 that for all $h, k \in \boldsymbol{Z}$ the sequence $\left(h a_{n}+k b_{n}+k d_{n}\right)$ has an a.d.f. $\bmod m$
given by

$$
\begin{equation*}
\left\|A\left(h a_{n}+k b_{n}+k d_{n} \equiv p\right)\right\|=\sum_{\substack{r, s=0 \\ h r+k s=p(\bmod m)}}^{m-1}\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n}+d_{n} \equiv s\right)\right\| \tag{3}
\end{equation*}
$$

for all $p \in \boldsymbol{Z}$. Since $\left(h a_{n}+k b_{n}\right)$ and $\left(d_{n}\right)$ are independent $\bmod m$ by Theorem 4, we obtain by applying Theorem 1 twice:

$$
\begin{aligned}
\left\|A\left(h a_{n}+k b_{n}+k d_{n} \equiv p\right)\right\| & =\left\|A\left(h a_{n}+k b_{n} \equiv p-k j\right)\right\| \\
& =\sum_{\substack{h r+k s=p-k j(\bmod m)}}^{m-1} \alpha(r) \beta(s) .
\end{aligned}
$$

On the other hand, the right-hand side of (3) is equal to

Thus $\left(a_{n}\right)$ and $\left(b_{n}+d_{n}\right)$ are independent $\bmod m$. Since $\left(c_{n}\right)$ enjoys a property similar to that of $\left(d_{n}\right)$, it follows by the same argument that $\left(a_{n}+c_{n}\right)$ and $\left(b_{n}+d_{n}\right)$ are independent $\bmod m$.

Theorem 6. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be independent $\bmod m$ and u.d. $\bmod m$, and let $h, k \in \boldsymbol{Z}$ with g.c.d. $(h, k, m)=1$. Then the sequence $\left(h a_{n}+k b_{n}\right), n=1,2, \cdots$, is u.d. $\bmod m$.

Proof. By (2), it suffices to show that for each $j=0,1, \cdots, m-1$, the congruence $h r+k s \equiv j(\bmod m)$ has exactly $m$ ordered pairs $(r, s)$, $0 \leq r, s<m$, as solutions. Since the condition g.c.d. $(h, k, m)=1$ implies that each of these congruences has a solution, and since each solution $(r, s)$ of $h r+k s \equiv j(\bmod m)$ is of the form $(r, s)=\left(r_{0}+r_{1}, s_{0}+s_{1}\right)$, where $\left(r_{0}, s_{0}\right)$ is a specific solution of $h r+k s \equiv j(\bmod m)$ and $\left(r_{1}, s_{1}\right)$ is an arbitrary solution of $h r+k s \equiv 0(\bmod m)$, it follows that all the congruences $h r+k s \equiv j(\bmod m), j=0,1, \cdots, m-1$, have the same number of solutions, and so each of them has $m$ solutions.

Obviously, if g.c.d. $(h, k, m)>1$, then the sequence $\left(h \alpha_{n}+k b_{n}\right), n$ $=1,2, \cdots$, cannot be u.d. $\bmod m$, although it will still have an a.d.f. $\bmod m$, according to Theorem 1 . We note that if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$ and $\left(a_{n}\right)$ is u.d. $\bmod m$, then $\left(h a_{n}+k b_{n}\right), n=1,2, \cdots$, is u.d. $\bmod m$ whenever g.c.d. $(h, m)=1$ (see [1, Ch. 5, Example 1.4]). The latter condition cannot be relaxed to g.c.d. $(h, k, m)=1$ : choose $\left(b_{n}\right)=(0)$, and let $h, k \in \boldsymbol{Z}$ with g.c.d. $(h, m)>1$ and g.c.d. $(k, m)=1$; then $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$ by Theorem 4 , but $\left(h a_{n}+k b_{n}\right)$ $=\left(h a_{n}\right)$, which is not u.d. $\bmod m$. One may also establish the following criterion. Suppose the sequence $\left(a_{n}\right)$ has an a.d.f. $\bmod m$; then $\left(a_{n}\right)$ is u.d. $\bmod m$ if and only if the sequence $\left(a_{n}+b_{n}\right)$ is u.d. $\bmod m$ for all sequences $\left(b_{n}\right)$ such that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$. The necessity follows from a remark made above. As to the sufficiency, one chooses $\left(b_{n}\right)=(0)$, which is independent $\bmod m$ of $\left(a_{n}\right)$ by Theorem 4.
(References can be found at the end of the second Note.)


[^0]:    *) Department of Mathematics, Southern Illinois University, Carbondale, Illinois, U. S. A.
    **) The Institute for Advanced Study, Princeton, New Jersey, U. S. A. The research of the second author was supported by NSF grant GP-36418X1.

