80. The Completion by Cuts of an M-symmetric Lattice

By Shûichirô Maeda and Yoshinobu Kato
Ehime University, Matsuyama
(Comm. by Kinjirô Kunugi, M. J. A., June 11, 1974)

It is well known that the completion by cuts of a modular lattice is not necessarily modular ([1], p. 127, Example 9). But the following question was open ([2], p. 55, Problem 4): Is the completion by cuts of an M-symmetric lattice M-symmetric? In this paper we will give a negative answer to this question by constructing an atomistic Msymmetric lattice whose completion by cuts is not M-symmetric.

Let E be an infinite set and let A, B, C, D be mutually disjoint subsets of E which are all infinite. We take a sequence of subsets $\left\{C_{n}\right\}$ of C which satisfies the following two conditions:

$$
\begin{equation*}
C=C_{0} \supset C_{1} \supset C_{2} \supset \cdots \text { and } \bigcap_{n=1}^{\infty} C_{n}=\phi \text { (empty) } \tag{1}
\end{equation*}
$$

(2) For every $n=1,2, \cdots$, the set $C_{n-1}-C_{n}$ is infinite.

Moreover, we take a sequence of subsets $\left\{D_{n}\right\}$ of D satisfying the same conditions, and we put $A_{n}=A \cup C_{n}$ and $B_{n}=B \cup D_{n}$. We denote by F the family of all finite subsets of E, and we put

$$
L=\left\{E, A_{n} \cup F, B_{n} \cup F, F ; 1 \leqq n<\infty, F \in F\right\} .
$$

Proposition 1. L forms an atomistic M-symmetric lattice, ordered by set-inclusion.

Proof. It is evident that if $X, Y \in L$ then their intersection $X \cap Y$ belongs to L. Hence, the meet $X \wedge Y$ exists and equals to $X \cap Y$. If $X=A_{m} \cup F_{1}$ and $Y=B_{n} \cup F_{2}\left(F_{1}, F_{2} \in F\right)$, then since E is the only upper bound of $\{X, Y\}$ in L, the join $X \vee Y$ is E. Hence, $X \vee Y$ exists for every $X, Y \in L$ and it holds that
(3) $X \vee Y=\left\{\begin{array}{l}X \cup Y \quad \text { if } X \cup Y \in L \\ E \quad \text { if } X \cup Y \notin L .\end{array}\right.$

Thus, L is a lattice and evidently it is atomistic. Next, we shall show that
(4) $(X, Y) M$ in L if and only if $X \cup Y \in L$.
$((X, Y) M$ means that the pair (X, Y) is modular. See [2], (1.1).) If $X \neq E, Y \neq E$ and $X \cup Y \in L$, then for any $X_{1}, Y_{1} \in L$ with $X_{1} \leqq X$ and $Y_{1} \leqq Y$ we have $X_{1} \cup Y_{1} \in L$. Hence, if $Y_{1} \leqq Y$ in L, then

$$
\left(Y_{1} \vee X\right) \wedge Y=\left(Y_{1} \cup X\right) \cap Y=Y_{1} \cup(X \cap Y)=Y_{1} \vee(X \wedge Y)
$$

Hence, $(X, Y) M$. To prove the converse, it suffices to show that if $X=A_{m} \cup F_{1}, Y=B_{n} \cup F_{2}$ then the pairs (X, Y) and (Y, X) are not modular. Put $Y_{1}=B_{n+1}$. Then $Y_{1} \leqq Y$, and since $Y_{1} \vee X=E$ by (3) we
have $\left(Y_{1} \vee X\right) \wedge Y=Y$. On the other hand, since $X \cap Y$ is finite and since $Y-Y_{1}=\left(B \cup D_{n} \cup F_{2}\right)-\left(B \cup D_{n+1}\right) \supset D_{n}-D_{n+1}$ is infinite, we have $Y_{1} \vee(X \wedge Y)=Y_{1} \cup(X \cap Y) \neq Y$. Hence, (X, Y) is not modular. Similarly, it holds that (Y, X) is not modular. Thus (4) has been proved, and hence L is M -symmetric.

Following [2], (12.1), for any subset \boldsymbol{X} of \boldsymbol{L} we denote by \boldsymbol{X}^{u} (resp. \boldsymbol{X}^{l}) the set of upper bounds (resp. lower bounds) of \boldsymbol{X}. The completion by cuts of \boldsymbol{L}, which is the family $\left\{\boldsymbol{X} \subset \boldsymbol{L} ; \boldsymbol{X}=\boldsymbol{X}^{u l}\right\}$, is denoted by $\overline{\boldsymbol{L}}$.

Lemma. For any subset S of E, we put $J(S)=\{X \in L ; X \subset S\}$.
(i) If $X \in \boldsymbol{L}$ then $\boldsymbol{J}(X) \in \overline{\boldsymbol{L}}$.
(ii) $J(S)^{u}=\{X \in L ; X \supset S\}$ for every $S \subset E$.
(iii) If $\boldsymbol{J}\left(S_{1}\right), \boldsymbol{J}\left(S_{2}\right) \in \overline{\boldsymbol{L}}$ then $\boldsymbol{J}\left(S_{1}\right) \wedge \boldsymbol{J}\left(S_{2}\right)=\boldsymbol{J}\left(S_{1} \cap S_{2}\right)$ in $\overline{\boldsymbol{L}}$. If moreover $\boldsymbol{J}\left(S_{1} \cup S_{2}\right) \in \bar{L}$ then $\boldsymbol{J}\left(S_{1}\right) \vee \boldsymbol{J}\left(S_{2}\right)=\boldsymbol{J}\left(S_{1} \cup S_{2}\right)$.
(iv) $J(A \cup F), J(B \cup F) \in \bar{L}$ for every $F \in F$; especially, $J(A), J(B)$ $\in \overline{\boldsymbol{L}}$.
(v) If $\boldsymbol{X}<\boldsymbol{J}(A)$ (resp. $\boldsymbol{X}<\boldsymbol{J}(B)$) in $\overline{\boldsymbol{L}}$ then $\boldsymbol{X}=\boldsymbol{J}(F)$ for some $\boldsymbol{F} \in \boldsymbol{F}$ with $F \subset A$ (resp. $F \subset B$).

Proof. (i) is evident.
(ii) Let $X \in J(S)^{u}$. For every $x \in S$, we have $\{x\} \in J(S)$, since $\{x\}$ $\in \boldsymbol{F} \subset \boldsymbol{L}$. Hence, $\{x\} \leqq X$, i.e. $x \in X$. Therefore, $X \supset S$. The converse is evident.
(iii) If $\boldsymbol{J}\left(S_{1}\right), \boldsymbol{J}\left(S_{2}\right) \in \overline{\boldsymbol{L}}$, then since $\boldsymbol{X} \wedge \boldsymbol{Y}=\boldsymbol{X} \cap \boldsymbol{Y}$ for every $\boldsymbol{X}, \boldsymbol{Y} \in \overline{\boldsymbol{L}}$, we have $\boldsymbol{J}\left(S_{1}\right) \wedge \boldsymbol{J}\left(S_{2}\right)=\boldsymbol{J}\left(S_{1}\right) \cap \boldsymbol{J}\left(S_{2}\right)=\boldsymbol{J}\left(S_{1} \cap S_{2}\right)$. Moreover, we have $\left(\boldsymbol{J}\left(S_{1}\right) \cup \boldsymbol{J}\left(S_{2}\right)\right)^{u}=\boldsymbol{J}\left(S_{1}\right)^{u} \cap \boldsymbol{J}\left(S_{2}\right)^{u}=\left\{X \in \boldsymbol{L} ; X \supset S_{1} \cup S_{2}\right\}=\boldsymbol{J}\left(S_{1} \cup S_{2}\right)^{u}$ by (ii). Hence, if $J\left(S_{1} \cup S_{2}\right) \in \bar{L}$, we have $\boldsymbol{J}\left(S_{1}\right) \vee \boldsymbol{J}\left(S_{2}\right)=\left(\boldsymbol{J}\left(S_{1}\right) \cup \boldsymbol{J}\left(S_{2}\right)\right)^{u l}$ $=\boldsymbol{J}\left(S_{1} \cup S_{2}\right)^{u l}=\boldsymbol{J}\left(S_{1} \cup S_{2}\right)$.
(iv) If $X \in J(A \cup F)^{u l}$, then since $A_{n} \cup F \in J(A \cup F)^{u}$ for every n, we have $X \subset \bigcap_{n}\left(A_{n} \cup F\right)=A \cup F$, whence $X \in J(A \cup F)$. Therefore, $\boldsymbol{J}(A \cup F)=\boldsymbol{J}(A \cup F)^{u l} \in \bar{L}$. Similarly, $J(B \cup F) \in \bar{L}$.
(v) Let $\boldsymbol{X}<\boldsymbol{J}(A)$ in $\overline{\boldsymbol{L}}$. Since $\boldsymbol{X}^{u} \nsupseteq J(A)^{u}$, there exists $X \in \boldsymbol{X}^{u}$ with $X \notin \boldsymbol{J}(A)^{u}$. Since $X \in \boldsymbol{L}$ and $X \not \supset A$, it is easily seen that $X \cap A_{1} \in \boldsymbol{F}$. Since $A_{1} \in \boldsymbol{J}(A)^{u} \subset \boldsymbol{X}^{u}$, we have $X \cap A_{1} \in \boldsymbol{X}^{u}$. Therefore, \boldsymbol{X}^{u} is a dual ideal of L containing a finite subset. Hence, there exists the smallest finite subset F contained in \boldsymbol{X}^{u}, and then $\boldsymbol{X}^{u}=\{X \in L ; X \supset F\}$. Therefore, $\boldsymbol{X}=\boldsymbol{X}^{u l}=\{X \in \boldsymbol{L} ; X \subset F\}=\boldsymbol{J}(F)$. Evidently, $F \subset A$.

Proposition 2. \bar{L} is not M-symmetric.
Proof. We shall show that $(\boldsymbol{J}(B \cup F), J(A)) M$ in \bar{L} for every $F \in \boldsymbol{F}$. If $\boldsymbol{X}<\boldsymbol{J}(A)$, then it follows from (v) of Lemma that $\boldsymbol{X}=\boldsymbol{J}\left(F_{0}\right)$ with F_{0} $\in \boldsymbol{F}, F_{0} \subset A$. Hence, by (iv) and (iii) of Lemma, we have $(\boldsymbol{X} \vee J(B \cup F))$ $\wedge J(A)=J\left(B \cup F \cup F_{0}\right) \wedge J(A)=J\left((F \cap A) \cup F_{0}\right)=J\left(F_{0}\right) \vee J(F \cap A)=X$ $\vee(J(B \cup F) \wedge J(A))$. Therefore, $(J(B \cup F), J(A)) M$.

Next, we shall show that if $\phi \neq F \in F$ and $F \cap(A \cup B)=\phi$ then the pair ($J(A), \boldsymbol{J}(B \cup F)$) is not modular. We have $\boldsymbol{J}(B)<\boldsymbol{J}(B \cup F)$ since
$F \notin \boldsymbol{J}(B)$. Since $(\boldsymbol{J}(A) \cup \boldsymbol{J}(B))^{u}=\boldsymbol{J}(A)^{u} \cap \boldsymbol{J}(B)^{u}=\{X \in \boldsymbol{L} ; X \supset A \cup B\}=\{E\}$, we have $\boldsymbol{J}(A) \vee J(B)=(\boldsymbol{J}(A) \cup \boldsymbol{J}(B))^{u l}=L$. Hence, $(\boldsymbol{J}(B) \vee \boldsymbol{J}(A)) \wedge \boldsymbol{J}(B$ $\cup F)=J(B \cup F)$. On the other hand, $J(B) \vee(J(A) \wedge J(B \cup F))=J(B)$ $\vee J(\phi)=J(B)$. Therefore, $(J(A), J(B \cup F))$ is not modular.

Remark 1. (i) By the proof of Proposition 2, \bar{L} is not \perp-symmetric ([2], Definition (1.11)).
(ii) A pair (X, Y) in L is dual modular if and only if $X \cup Y \in L$. Indeed, if $X \cup Y \in L$, then for any $Y_{1} \geqq Y$ we have $Y_{1} \wedge(X \vee Y)=Y_{1} \cap(X$ $\cup Y)=\left(Y_{1} \cap X\right) \cup Y=\left(Y_{1} \wedge X\right) \vee Y$, whence (X, Y) is dual modular. If X $=A_{m} \cup F_{1}$ and $Y=B_{n} \cup F_{2}$, then since $X \cup Y \neq E$, we can take $x \in E$ $-(X \cup Y)$. Putting $Y_{1}=Y \cup\{x\}$, we have $Y_{1} \wedge(X \vee Y)=Y_{1} \wedge E=Y_{1} \ni x$. But, since $Y_{1} \wedge X$ is a finite set, $\left(Y_{1} \wedge X\right) \vee Y=\left(Y_{1} \cap X\right) \cup Y \nexists x$. Hence, (X, Y) is not dual modular.

From this fact, L is M^{*}-symmetric and hence it is finite-modular ([2], (9.5)). Moreover, together with (4), L is cross-symmetric and dual cross-symmetric ([2], (1.9)).
(iii) It follows from (ii) and [2], (12.7) that \bar{L} is a finite-modular AC-lattice. This is an example on Problem 2 in [2].

Remark 2. Though Problems 2 and 3 were solved affirmatively by M. F. Janowitz, we give here a new simple example of an AC-lattice which is neither M-symmetric nor ∇-symmetric (∇-symmetry means that $a \nabla b$ implies $b \nabla a$).

Let E be an infinite set and let $a, b \in E(a \neq b)$. We put $A=E$ $-\{a, b\}$ and
$L=\{E, A\} \cup F(F$ is the set of all finite subsets of $E)$.
Evidently, L is a complete lattice by set inclusion, where the meet of elements of L coincides with their intersection, and $A \vee\{a\}=A$ $\vee\{b\}=E$. It is easily verified that L is an AC-lattice. The pair ($\{a, b\}, A$) is evidently modular. But, $(A,\{a, b\})$ is not modular, since $(\{a\} \vee A) \wedge\{a, b\}=E \wedge\{a, b\}=\{a, b\} \neq\{a\}=\{a\} \vee(A \wedge\{a, b\})$. Moreover, $\{a\} \nabla A$ holds evidently, but $A \nabla\{a\}$ does not hold, since $(\{b\} \vee A) \wedge\{a\}$ $=\{a\} \neq\{b\} \wedge\{a\}$.

References

[1] G. Birkhoff: Lattice Theory (3rd edition). Amer. Math. Soc. Colloq. Publ., Providence (1967).
[2] F. Maeda and S. Maeda: Theory of Symmetric Lattices. Springer, Berlin-Heidelberg-New York (1970).

