109. Shift Automorphism Groups of von Neumann Algebras

By Marie CHODA

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1974)

1. In the structure theory of von Neumann algebras of type III, Connes and Takesaki have treated a group G of automorphisms (*-preserving) of a von Neumann algebra \mathcal{A} with the following property:

(\mathcal{A} admits a faithful semi-finite normal trace φ such that

(*) $\begin{cases} \varphi \cdot g = \lambda_q \varphi & (1) \\ \text{for every non trivial automorphism } g \text{ of } G \text{ and some scalar} \\ 0 < \lambda_q \neq 1 \text{ depending on } g. \end{cases}$

Especially, assume that G is a singly generated automorphism group of an abelian von Neumann algebra \mathcal{A} . It is proved that there exists a projection E of \mathcal{A} such that

 $\{g(E); g \in G\}$ is an orthogonal family (2)

and

$$\sum_{e \in a} g(E) = 1 \tag{3}$$

if G satisfies the property (*).

We have an interest in an automorphism group of a von Neumann algebra with such a projection.

Definition 1. Let G be an automorphism group of a von Neumann algebra \mathcal{A} . If there exists a projection E of \mathcal{A} with (2) and (3), then G is called a *shift* and E is called a *shift projection* of G in \mathcal{A} . Especially, if E is a central projection, then G is called a *central shift*.

In this paper, we shall show, for a singly generated automorphism group, an elementary relation between the property (*) and the notion of shift and prove the following theorem:

Theorem 2. If G is a discrete central shift of automorphisms of a von Neumann algebra \mathcal{A} , then the crossed product of \mathcal{A} by G is isomorphic to the tensor product $\mathcal{A}^{G} \otimes \mathcal{L}(L^{2}(G))$ of the fixed algebra \mathcal{A}^{G} in \mathcal{A} of G and the algebra $\mathcal{L}(L^{2}(G))$ of all bounded operators on $L^{2}(G)$.

2. In order to construct the discrete crossed product of a von Neumann algebra \mathcal{A} by an automorphism group G, freely acting automorphism groups play an important role.

An automorphism g of a von Neumann algebra $\mathcal A$ is called freely acting on $\mathcal A$

when

$$AB = g(B)A$$
 for all B in \mathcal{A}

implies

No. 7]

A = 0

([9]). An automorphism group G of \mathcal{A} is called *freely acting* on \mathcal{A} if $g \neq 1$ (the unit) in G is freely acting on \mathcal{A} .

We shall show that the property (*) is stronger than the concept of free action:

Lemma 3. Let G be an automorphism group of a von Neumann algebra \mathcal{A} . If G satisfies the property (*), then G is freely acting on \mathcal{A} .

Proof. Take $g \in G$ such that $g \neq 1$. Let F be the inner part projection of g (cf. [9]), that is, F is the maximum central projection of \mathcal{A} such that g(F) = F and g is an inner automorphism on \mathcal{A}_F . Then there exists a partial isometry V of \mathcal{A} such that $V^*V = VV^* = F$ and $g(T) = V^*TV$ for each $T \in \mathcal{A}_F$. Assume that $F \neq 0$. Since φ is semifinite, it follows that there exists a nonzero projection $P \leq F$ such as $\varphi(P) < +\infty$. By the equality (1), we have that

 $\lambda_g \varphi(P) = \varphi(g(P)) = \varphi(V^*PV) = \varphi(VV^*P) = \varphi(P).$

It implies that $\varphi(P)=0$, or P=0 because φ is faithful, that is a contradiction. Hence we have F=0, that is, g is freely acting.

Remark. Especially, if T is a fixed point of an automorphism g in G satisfying (*), then $\varphi(T)=0$ or $\varphi(T)=+\infty$. Hence there is no finite trace on \mathcal{A} satisfying the condition (*).

Lemma 4. Let G be a shift with a central shift projection E of a von Neumann algebra \mathcal{A} , then G is freely acting on the center \mathbb{Z} of \mathcal{A} .

Proof. Take $g \in G$ $(g \neq 1)$. Let A be an element of \mathbb{Z} such as AB = g(B)A for every $B \in \mathbb{Z}$. Then we have

Ah(E) = Agh(E) for each $h \in G$,

which implies that

Ah(E) = Agh(E)h(E) = 0 for each $h \in G$.

Therefore $A = \sum_{h \in G} Ah(E) = 0$, that is, g is freely acting on \mathbb{Z} . Hence G is freely acting on \mathbb{Z} .

As an example of a shift, there exists a finite freely acting automorphism group of an abelian von Neumann algebra (cf. [7]).

On the other hand, even if a von Neumann algebra is abelian, there exists a freely acting automorphism group which is not a shift. In fact, a countably infinite discrete group of freely acting measure preserving automorphisms of a nonatomic abelian von Neumann algebra is not a shift by Dye's result [7] and Theorem 7 in the below.

Hence, by Lemma 4, the concept of central shift is strictly stronger than free action.

For a singly generated automorphism group of an abelian von Neumann algebra, the property (*) is equivalent to a trace preserving shift: **Proposition 5.** Let g be an automorphism of an abelian von Neuman algebra \mathcal{A} and G the group generated by g. Then the following two statements are equivalent:

(a) G satisfies the property (*).

(b) G is a shift and \mathcal{A} admits a faithful semi-finite normal trace ψ invariant under g.

Proof. (a) \Rightarrow (b): It is clear by [10; Lemma 8.8] and [10; Lemma 8.9].

(b)
$$\Rightarrow$$
(a): Take $0 < \lambda < 1$. Define
 $\varphi(A) = \sum_{n=-\infty}^{\infty} \lambda^n \psi(Ag^n(E))$ for $A \in \mathcal{A}$,

where E is a shift projection of G in \mathcal{A} . Then we have a faithful normal trace φ on \mathcal{A} . Let B be a nonzero positive element in \mathcal{A} , then there exists an integer m such as $Bg^m(E) \neq 0$. Since ψ is a semi-finite, then we have a nonzero positive element T in \mathcal{A} such as $Bg^m(E) \geq T$ and $\psi(T) < +\infty$. We have, then,

$$\varphi(Tg^{m}(E)) = \sum_{n=-\infty}^{\infty} \lambda^{n} \psi(Tg^{m}(E)g^{n}(E)) = \lambda^{m} \psi(Tg^{m}(E)) < +\infty,$$

so that φ is semi-finite. Finally we have

$$\varphi(g(T)) = \sum_{n=-\infty}^{\infty} \lambda^n \psi(g(T)g^n(E))$$
$$= \sum_{n=-\infty}^{\infty} \lambda^n \psi(Tg^{n-1}(E))$$
$$= \lambda \sum_{n=-\infty}^{\infty} \lambda^{n-1} \psi(Tg^{n-1}(E)) = \lambda \varphi(T)$$

for every $T \in \mathcal{A}$. So that we have

 $\varphi(g(T)) = \lambda \varphi(T)$ for every $T \in \mathcal{A}$.

3. Now we shall give a brief resume of the crossed product $G \otimes \mathcal{A}$ of a von Neumann algebra \mathcal{A} acting on a Hilbert space \mathfrak{H} by a discrete automorphism group G of \mathcal{A} following after Connes [5] and Takesaki [10].

On the Hilbert space $L^2(G)\otimes\mathfrak{H}$, define representations I of \mathcal{A} and U of G as follows,

$$(I(A)\xi)(g) = g^{-1}(A)\xi(g), \qquad g \in G, \ A \in \mathcal{A}$$

$$(4)$$

and

$$(U(g)\xi)(h) = \xi(g^{-1}h), \qquad g \in G, \xi \in L^2(G) \otimes \mathfrak{H}.$$
 (5)

It is easily seen that I is a normal faithful representation and

 $U(g)I(A)U(g)^* = I(g(A)), \qquad A \in \mathcal{A}, g \in G.$ (6)

Then the crossed product $G \otimes \mathcal{A}$ is the von Neumann algebra on $L^2(G) \otimes \mathfrak{H}$ generated by $I(\mathcal{A})$ and U(G).

In [5; Proposition 1.4.6], Connes proved the following:

Theorem A. Let $G \otimes \mathcal{A}$ be the crossed product of a von Neumann algebra \mathcal{A} by a discrete automorphism group G of \mathcal{A} .

(a) The representation I is a mapping such that the matrix representation equals to $(I(A))_{q,h} = \delta_a^h g^{-1}(A)$ for $A \in \mathcal{A}$ and $g, h \in G$.

(b) The application e of $G \otimes \mathcal{A}$ onto $I(\mathcal{A})$ such that $e(T) = I((T)_{1,1})$ $(T \in G \otimes \mathcal{A})$ is a faithful normal expectation of $G \otimes \mathcal{A}$ onto $I(\mathcal{A})$.

4. Now, we shall give a proof of Theorem 2. Let E be a central shift projection in \mathcal{A} of G. Then, by the definition of $G \otimes \mathcal{A}$, $\{I(g(E)); g \in G\}$ is an orthogonal family of equivalent projections in $G \otimes \mathcal{A}$ such that

$$\sum_{g \in G} I(g(E)) = 1.$$

This leads to that

 $G \otimes \mathcal{A} \cong (G \otimes \mathcal{A})_{I(E)} \otimes \mathcal{L}(L^2(G)).$

Take $T \in G \otimes \mathcal{A}$. Since the shift projection is central, a direct computation implies the following equality:

 $e\{(I(E)TI(E)-I(E)e(T)I(E))^*(I(E)TI(E)-I(E)e(T)I(E))\}=0,$ where e is the faithful expectation of $G\otimes \mathcal{A}$ onto $I(\mathcal{A})$ in Theorem A. Hence

$$I(E)TI(E) = I(E)e(T)I(E)$$

Therefore we have

 $G \otimes \mathcal{A} \cong (I(\mathcal{A}))_{I(\mathcal{E})} \otimes \mathcal{L}(L^2(G)).$

We shall identify $I(\mathcal{A})$ with \mathcal{A} . For each $A \in \mathcal{A}$, put

$$B = \sum_{g \in G} g(A)g(E)$$

where sum exists, since E is a central shift projection of G in \mathcal{A} . Then $B \in \mathcal{A}^{G}$ and we get the following equality

$$BE = \sum_{a \in A} g(A)g(E)E = AE$$
,

which implies that $\mathcal{A}_E = \mathcal{A}_E^G$.

On the other hand, the \mathcal{A}^{a} -support of E is 1. In fact, if P is a projection of \mathcal{A}^{a} with $P \geq E$, then

$$P = g(P) \ge g(E)$$

and so

Therefore

$$P = \sum_{g \in G} Pg(E) = \sum_{g \in G} g(E) = 1.$$

$$A_E^G \text{ is isomorphic to } \mathcal{A}^G. \text{ Hence we have }$$

$$G \otimes \mathcal{A} \cong \mathcal{A}^G \otimes \mathcal{L}(L^2(G)).$$

For a finite group G of outer automorphisms of a II_1 -factor \mathcal{A} , it holds that

$$G \otimes \mathcal{A} \cong \mathcal{A}^{G} \otimes \mathcal{L}(L^{2}(G)),$$

(cf. [1]).

5. In [2] and [3], we generalized the notions of abelian projections and of discrete von Neumann algebras. A projection $E \in \mathcal{A}$ is called *abelian over* a subalgebra \mathcal{B} if $E \in \mathcal{B}^c$ and for every projection $P \in \mathcal{A}$ with $P \leq E$, there exists a projection $Q \in \mathcal{B}$ such that P = QE ([2]). A von Neumann algebra \mathcal{A} is called *discrete over* \mathcal{B} if there exists a projection E of \mathcal{A} which is abelian over \mathcal{B} and the \mathcal{B} -support of E is 1 ([3]).

Theorem 6. If G is a discrete central shift automorphism group of a von Neumann algebra \mathcal{A} , then \mathcal{A} is discrete over the fixed algebra \mathcal{A}^{G} and furthermore $G \otimes \mathcal{A}$ is discrete over \mathcal{A}^{G} .

Proof. In the proof of Theorem 2, we have that

 $E(G\otimes \mathcal{A})E = E\mathcal{A}E = E\mathcal{A}^{G}E.$

Hence, by [4; Lemma 2], the projection E in $G \otimes \mathcal{A}$ (and in \mathcal{A}) is abelian over \mathcal{A}^{g} because E belongs to $\mathcal{A}^{g'} \cap \mathcal{A}$. On the other hand, the \mathcal{A}^{g} support of E is 1. Therefore $G \otimes \mathcal{A}$ and \mathcal{A} are discrete over \mathcal{A}^{g} .

Very recently, in a mimeographed paper, Connes, Ghez, Lima, Testard and Woods defined a cohyperfinite von Neumann algebra as the following. A von Neumann algebra \mathcal{A} acting on a separable Hilbert space is called *cohyperfinite* iff $\mathcal{A} \otimes I_{\infty}$ is hyperfinite, that is, there exists an increasing sequence $(\mathcal{N}_k)_{k=1,2,\dots}$ of type I_{2^k} subfactors of $\mathcal{A} \otimes I_{\infty}$ such that

$$\left(\bigcup_{R=1}^{\infty}\mathcal{N}_{k}\right)^{-}=\mathcal{A}\otimes I_{\infty}$$

Theorem 7. Assume that G is a discrete central shift of automorphisms of a von Neumann algebra \mathcal{A} . For \mathcal{A} and $G \otimes \mathcal{A}$,

- (a) If one of them is continuous, then all of them are continuous.
- (b) If one of them is discrete, then all of them are discrete.
- (c) If one of them is a factor, then all of them are factors.

(d) If one of them is cohyperfinite, then all of them are cohyperfinite.

Proof. By Theorem 6, \mathcal{A} and $G \otimes \mathcal{A}$ are discrete over \mathcal{A}^{a} . Therefore, by [6; Proposition 3] and the proof of [3; Proposition 8], we have Theorem 7.

References

- [1] H. Choda: A comment on the Galois theory for finite factors (to appear).
- [2] M. Choda: Abelian projection over a von Neumann subalgebra. Proc. Japan Acad., 48, 384-388 (1972).
- [3] ——: On types over von Neumann subalgebras and the Dye correspondence.
 Publ. RIMS, Kyoto Univ., 9, 45-60 (1973).
- [4] ——: A von Neumann algebra continuous over a von Neumann subalgebra. Proc. Japan Acad., 49, 174–178 (1973).
- [5] A. Connes: Une classification des facteurs de type. III. Ann. Scient. Ec. Norm. Sup., 6, 133-252 (1973).
- [6] A. Connes, P. Ghez, R. Lima, D. Testard, and E. J. Woods: Review of "crossed product of von Neumann algebras". Mimeographed paper.
- [7] H. A. Dye: On groups of measure preserving transformations. I. Amer. J. Math., 81, 119-159 (1959).
- [8] Y. Haga and Z. Takeda: Correspondence between subgroups and subalgebras in a cross product von Neumann algebra. Tohoku Math. J., 24, 167– 190 (1972).

- [9] R. R. Kallman: A generalization of free action. Duke Math. J., 36, 781-789 (1969).
- [10] M. Takesaki: Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math., 131, 249-310 (1973).