96. Fourier Transform of Banach Algebra Valued Functions on Group. II*)

By Reri Takamatsu
Department of Mathematics, Sophia University
(Comm. by Kôsaku Yosida, m. J. A., Sept. 12, 1974)

The next theorem is a generalization of the theorem in the previous paper.

Theorem. Let h be a continuous mapping of $L^{1}(G \rightarrow A)$ into B with the following properties;
(1) $h(a f+b g)=a h(f)+b h(g)$ for any complex numbers a, b, and $f, g \in L^{1}(G \rightarrow A)$,
(2) $h(f * g)=h(f) \cdot h(g) \quad$ for $f, g \in L^{1}(G \rightarrow A)$,
(3) for any $\varepsilon>0$ there exists $f_{s} \in L^{1}(G \rightarrow A)$ such that $\left\|h\left(f_{s}\right)-1\right\|_{B}<\varepsilon$.

Then there exist a homomorphism α of A into B and a bounded continuous homomorphism φ of G into $C_{B}(\alpha(A))$ such that

$$
h(f)=\int_{G} \varphi(x) \alpha(f(x)) d x, \quad \text { for } f \in L^{1}(G \rightarrow A)
$$

where $C_{B}(\alpha(A))$ means the set of all elements of B that commute with every element in the range of α.

Proof. By the property (3), there exists $f_{1} \in L^{1}(G \rightarrow A)$ such that $h\left(f_{1}\right)^{-1}$ exists in B. For this f_{1} and for any fixed $f \in L^{1}(G \rightarrow A)$, by Proposition 4, there exists a sequence $\left\{E_{n}\right\}$ of measurable sets in G such that

$$
\begin{aligned}
& \left\|m\left(E_{n}\right)^{-1} \chi_{E_{n}} * f_{1}-f_{1}\right\|<1 / n, \quad \quad(n=1,2, \cdots) . \\
& \left\|m\left(E_{n}\right)^{-1} \chi_{E_{n}} * f-f\right\|<1 / n, \quad
\end{aligned}
$$

Then, for $a \in A$,

$$
\begin{aligned}
\left\|m\left(E_{n}\right)^{-1} h\left(\chi_{E_{n}} * a f_{1}\right)-h\left(a f_{1}\right)\right\|_{B} & =\left\|m\left(E_{n}\right)^{-1} h\left(a \chi_{E_{n}}\right) h\left(f_{1}\right)-h\left(a f_{1}\right)\right\|_{B} \\
& \leqq\|h\| \cdot\|a\| / n,
\end{aligned}
$$

which vanishes as n tends to ∞.
We put $\alpha(\alpha)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)^{-1} h\left(a \chi_{E_{n}}\right)=h\left(a f_{1}\right) h\left(f_{1}\right)^{-1}$. Replacing f_{1} by f in the inequality above, we get $h(a f)=\alpha(a) h(f)$.

Since the definition of α does not depend on the choice of $\left\{E_{n}\right\}$, $h(a f)=\alpha(a) h(f)$ holds good for every $f \in L^{1}(G \rightarrow A)$.

We show α is a homomorphism.

$$
\begin{aligned}
\alpha(a b) & =\alpha(a b) h\left(f_{1}\right) h\left(f_{1}\right)^{-1}=h\left(a b f_{1}\right) h\left(f_{1}\right)^{-1}=\alpha(a) \alpha(b) h\left(f_{1}\right) h\left(f_{1}\right)^{-1} \\
& =\alpha(a) \alpha(b) .
\end{aligned}
$$

[^0]Now let φ be the bounded continuous homomorphism of G into B which is constructed in Proposition 5. Then φ has following properties;
(i) $h\left(f_{t}\right)=\varphi(t) h(f) \quad$ for $t \in G$ and $f \in L^{1}(G \rightarrow A)$,
(ii) $\varphi(s t)=\varphi(s) \varphi(t) \quad$ for $s, t \in G$,
(iii) $\alpha(a) \varphi(t)=\varphi(t) \alpha(a) \quad$ for all $a \in A$ and $t \in G$.

We have (iii) because of

$$
\alpha(a) \varphi(t) h\left(f_{1}\right)=h\left(a f_{1 t}\right)=h\left(\left(a f_{1}\right)_{t}\right)=\varphi(t) \alpha(a) h\left(f_{1}\right) .
$$

If f is a measurable step function, $f=\sum_{\nu=1}^{n} a_{\nu} \chi_{E_{\nu}}$, then we have

$$
\alpha(f(x))=\alpha\left(\sum_{\nu=1}^{n} a_{\nu} \chi_{E_{\nu}}(x)\right)=\sum_{\nu=1}^{n} \alpha\left(a_{\nu} \chi_{E_{\nu}}(x)\right)=\sum_{\nu=1}^{n} \alpha\left(a_{\nu}\right) \chi_{E_{\nu}}(x),
$$

and

$$
\begin{aligned}
h(f) & =\sum_{\nu=1}^{n} h\left(a_{\nu} \chi_{E_{\nu}}\right)=\sum_{\nu=1}^{n} h\left(a_{\nu} \chi_{E_{\nu}} * f_{1}\right) h\left(f_{1}\right)^{-1} \\
& =\sum_{\nu=1}^{n} h\left(\chi_{E_{\nu}}\right) h\left(a_{\nu} f_{1}\right) h\left(f_{1}\right)^{-1} \\
& =\sum_{\nu=1}^{n} h\left(\chi_{E_{\nu}}\right) \alpha\left(a_{\nu}\right) \\
& =\sum_{\nu=1}^{n} \int_{G} \varphi(x) \chi_{E_{\nu}}(x) \alpha\left(a_{\nu}\right) d x \\
& =\int_{G} \varphi(x) \sum_{\nu=1}^{n} \alpha\left(a_{\nu}\right) \chi_{E_{\nu}}(x) d x \\
& =\int_{G} \varphi(x) \alpha(f(x)) d x .
\end{aligned}
$$

If we choose any $g \in L^{1}(G \rightarrow A)$, then we can also choose a measurable step function $f=\sum_{\nu=1}^{n} a_{\nu} \chi_{E_{\nu}}$ such that $\mid\|g-f\|<\varepsilon / 2 \max \left(\|h\|,\|\varphi\|_{\infty}\right)$.

Hence we get a following inequality.

$$
\begin{aligned}
& \| h(g)-\int_{G} \varphi(x) \alpha(g(x)) d x \|_{B} \\
& \leqq\|h(g)-h(f)\|_{B}+\left\|\int_{G} \varphi(x) \alpha(f(x)) d x-\int_{G} \varphi(x) \alpha(g(x)) d x\right\|_{B} \\
& \leqq\|h\| \cdot\|\mid g-f\|\left\|+\int_{G}\right\| \varphi(x)\left\|_{B} \cdot\right\| \alpha(f(x)-g(x)) \|_{B} d x \\
& \quad<\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Q.E.D.

[^0]: *) Continuation of the same titled paper, published in this Proceedings, June 1974.

