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By a strongly pseudo-convex (s.p.c) manifold we mean the abstract
model (cf. Kohn [2]) of a s.p.c, real hypersurface of a complex mani-
fold. The main aim of this note is to announce some theorems on
compact s.p.c, manifolds M, especially on the cohomology groups
H,(M) due to Kohn-Rossi [3] and the holomorphic de Rham coho-
mology groups H(M) (see Theorems 1, 2). We also apply Theorem 2
to the study of isolated singular points of complex hypersurfaces (see
Theorem 4).

Throughout this note we always assume the differentiability of
class C. Given a fibre bundle E over a manifold M, I-’(E) denotes the
set of differentiable cross sections of E.

1. S.p.c. manifolds. Let M’ be an n-dimensional complex mani-
fold and M a real hypersurface of M’. Let T’ (resp. T) be the com-
plexified tangent bundle of M’ (resp. of M). Denote by S’ the sub-
bundle of T’ consisting of all tangent vectors of type (1, 0) to M’ and,
for each x e M, put S=TVIS’. Then we have dim c S=n-1 and
hence the union S=S forms a subbundle of T. It is easy to see
that S satisfies

1) SCS=O,
2) [F(S), F(S)] F(S).
By 1), the sum P-S+S is a subbundle of T. Consider the factor

bundle Q-TIP and denote by w the projection of T onto Q. For each
x e M, define a Q-valued quadratic form H on S, the Levi form at
x, by H(X)--w([X, X]) for all X e F(S). Then M is, by definition,
s.p.c, if S satisfies

3) the Levi form H is definite at each x e M.
Let M be a (real) manifold of dimension 2n-1. Suppose that

there is given an (n-1)-dimensional subbundle S of the complexified
tangent bundle T of M. Then S is called a s.p.c, structure if it saris-
ties conditions 1), 2) and 3) stated above, and the manifold M together
with the structure is called a s.p.c, manifold.

2. The cohomology groups HP’q(M), Hg(M) and Hg’q(M). Let
M be a s.p.c, manifold of dimension 2n--1 and S its s.p.c, structure.
Let {, d} be the de Rham complex of M with complex coefficients.
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For any integers p and/c, denote by F() the subspace of j con-
sisting of all e / which satisfy

(x,..., x_, Y,..., Y_+)=0
for all X, ., X,_ e T, Y, ., Y_,+ e S and x e M. Then we easily
find that the system (F’()} gives a filtration of the de Rham complex.
Note that the filtration is canonically bounded, i.e., F()= and
F’+(’)-0. Let (Er,q} denote the spectral sequence associated with
the filtration.

The groups H’,q(M). We denote by H’,q(M) the groups E,q which
are the cohomology groups associated with the complexes
where C’,q--F’(’+q)/F+(,_j+q) and the operator " C’,qC",q+ is
naturally induced from the operator d" F’(,’+q)F’(,’++). It can
be shown that the space C",q may be described as T’(/’*(R)/qS*),
where S--T/S. (Suppose that the s.p.c, manifold M is realized as a
s.p.c, hypersurface of a complex manifold M’. Then it is easy to see
that the complexes (C’,q,} coincide with the complexes (_’,q,} in-
troduced by Kohn-Rossi [3]. Note that they erroneously described
the space C",q as T’(/’S*(R)/qS*).) In the same manner as Kohn [2],
we can develop the harmonic theory or the complexes {C",, }. In
particular we have dim H’,q(M) < c (q=/= O, n-- 1), provided M is
compact.

The groups H(M). The group E,={ e C,I=0} is called the
space o holomorphic k-orms We denote by H(M) the groups E,
which are the cohomology groups associated with the complex (E,, d},
the holomorphic de Rham complex.

The groups H,,q(M). If we put t,q=F(,’/q), we have d,_A’,q

c,q+. Thus the systems {,q, d} orm complexes. We denote by
H,,q(M) the cohomology groups associated with these complexes.

The short exact sequences
O-+’q--+-’q /--+C-’q /--+0

induce the exact sequences o cohomology groups
( ) OH(M)H.-1,1(M)H-I,I(M)H.,I(M).
Since H/(M)=H/,(M)=O, it ollows that H,,(M)-H,(M). Con-
sequently we get the exact sequence
(.’) O--H(M)---H,-1,1(M)---Hn-I,I(M)---Hn,I(M).

3. Finiteness for the groups H-I’I(M) and H(M). Let M be a
compact s.p.c, manifold. We assume that dim M----- 2n--1 =>5. Let
be any integer. By its definition H,-,(M) was the cohomology group
associated with the complex

d d-,o >-1, >-,,..
We take Riemannian metric g on M, which gives rise to inner
products (,) in the spaces -, (i-0, 1, 2). Let denote the adjoint
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operators of d with respect to these inner products. We also define
Sobolev norms I[, s being any real number, in the spaces -,.

Theorem 1. The Laplacian t=d+d3" -1,_._-, is subel-
liptic, that is, there is a positive number a such that

where C is a positive constant independent of .
Corollary. dim H(M)=dim H,-1.1(M) oo (by exact sequence (.)).
Now let M be a compact manifold o dimension 2n--15. Sup-

pose that there is given a differentiable amily (S(t))er o s.p.c.
structures on M, the parameter space T being a domain in the space
R of real variables. Let M(t) denote the s.p.c, manifold M with the
structure S(t).

Theorem 2. The integer valued #unction p(t)=dim H-I,I(M(t))
(t e T) is upper semi-continuous.. Isolated singular points o complex hypersuraces. We first
state the following

Proposition 3. Let M’ be a complex manifold of dimension n3,
and V a relatively compact subdomain o# it. Assume that V is a Stein
manifold and that the boundary M=V of V is a smooth, compact, con-
nected, s.p.c, hypersur#ace of M’. Then we have
( 1 ) H,q(M)=O (q :/= 0, n--l),
( 2 ) H(M)_H(V),
where H(V) denotes the k-th de Rham cohomology group of V.

(1) is due to Kohn-Rossi [3]. The proof of (2) above all uses the
fact that H’q()--H,q(V)--O (qO) (Kohn [1]), where --VM.

Let f be a polynomial function on the space C/ of n/ 1 complex
variables, where n_>_3. We assume that f vanishes at the origin and
that the origin is an isolated critical point of f. Let V be the com-
plex hypersurface defined by f--O and S (m--2n+ 1) the -sphere in
C+ centred at the origin. We put M=VS. Then, for suffi-
ciently small, M, is a compact, connected, s.p.c, hypersurface of V (cf.
Milnor [4]).

Theorem 4. Let / be the multiplicity of the isolated singular
point, the origin, of the complex hypersurface V (Milnor [4]). Then
we have, for sufficiently small,

/=< dim H. ,(M,) <__ dim H(M,) / dim H-,(M,).
Proof. For c e C, let V(c) denote the complex hypersurface defined

by f-- c. We put V.(c)-- V(c) B and M,(c)-- V(c) S. where B is
the open -ball in C/ centred at the origin. Note that M--M,(O) and
that M.(c) is the boundary of the domain V,(c) in V(c). From now on,
and c will be such that and ]c], being sufficiently small.

Then we see that M.(c) is a compact, connected, s.p.c, hypersurface of
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V(c) and that V,(c) (c#:O) is a Stein manifold. Consequently by Prop-
osition 3, (1), we have H’-,(M,(c))=O (c:/:0) and hence by Proposition
3, (2) and exact sequence (.’), H",(V(c))H(M,(c))-H".-’(M,(c)) (c0).
Therefore it follows from Milnor [4] that dim H,-,(M(c))
--dim H(M,(c))=l (c4:0). Furthermore we see that, being fixed,
the family {M,(c)}< is a differentiable family (or a deformation) of
s.p.c, manifolds. Therefore by Theorem 2, we have dim H7,(M,)
dim H,-,(M,(c))--Z (c4=0), proving Theorem 4.

For example, consider the case where f(z,...,z/)=z[/...
/ z,+. Then we have/--1. Furthermore we can show that HP,q(M,)
=0 (p+qg=n--l,n;qg=0,n--1) and H(M,)=O for all k. Hence
H,-1,1(M,) H"-I.I(M,) and dim H’-I,(M,) >__ 1.
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