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1. Introduction. This paper is concerned with the solution
the initial value problem or the system o equations or u(x, t) and
u(x, t):

(1.1) L[u] -+ c u=,uu, (i= 1, 2)

with the bounded and measurable initial data
(1.2) u(x, O)--u(x), Ixl c.
The system (1.1) is the simplest hyperbolic one describing the non-
linear coupling (characterized by parameters 2 and 2) between two
waves propagating along the x-axis with constant velocities c and c
respectively. If we put c 2 1 and c== 1 it is reduced to the
system proposed by Yamaguti [1] in order to describe a time history
of the distribution of predator u(t, x) and prey u(t, x)running on a
straight line in the opposite directions. Yamaguti [1] and Yoshikawa
and Yamaguti [2] have given extensive studies of this system and have
derived many important asymptotic properties of solutions as
without solving the equations explicitly. As ar as the author is aware
no explicit solution o our problem is ound in the literature, in spite
of the fact that it is reducible to the orm amenable to Moutard’s
theorem [3].

The aim o this paper is to give the explicit solution o our problem
and its version by means o a transormati0n analogous to that used
by Hopf [4] and Cole [5] in their derivation o the solution o the
Burgers equation. Several illustrating examples substantiating
Yamaguti and oshikawa’s prediction are given.

2. General solution. The solution u of (1.1) is derivable rom
the function "(2.1) u--27L[], (]:/:i)--1 or 2
provided that satisfies the equation
(2.2) LL[] L[]L[].
Here and hereafter the suffices i and ] denote the pair 1 and 2 or 2
and 1.



624 It. HASlMOTO [Vol:-50,

Let us introduce the new function q defined by
(2.3) 0-- log .
Then, (2.2) yields

(2.4) --LL[]=-LL.[log #]--LL[#]/#--L[#]L2[#]/q
L[log #]L2[log q] L[#]L[q] /q2,

which shows that q is given by the general solution of the linear equa-
tion
(2.5) LL[q]-- 0,
i.e.
(2.6) #--F(X) + F(X2),
where
(2.7) X--x--ct,
and F (i= 1, 2) are arbitrary functions to be determined rom e.g. the
initial conditions.

Introducing (2.3) with (2.6) into (2.1) we have

(2.8) u- l lL[]=(c--c)--F:(X)2,
which is easily verified to satisfy (1.1) if we note L,[F,(X,)]=O.

3. Initial value problem. In order to satisfy the initial condi-
tions (1.2) we have to determine two arbitrary functions in (2.6) or
(2.8) from the two equations

(3.1) F(x) F(x) g(x) =_ 2 ...u(x).
(x, O) F(x) + F.(x) c--c

Equations (3.1) are solved by quadratures to give

(3.2) W(x)--F(x) / F.(x)= exp ( [g()+ g()]d1
and

(3.3) F(x)--.[ W()g()d+F(O),

where we have normalized F so that W(0)= 1.
Introducing these expressions into (2.8) we have

(3.4) u,(x, t)= W(X)u(X)/[1+ j’ox’ W()g,()d]
which is proved to satisfy the initial conditions (1.2) if we use the
identity derived rom (3.2)"
(3.5) [g() + g()]W()-- W’().

Further reduction of (3.4) by the use of ’(3.5) in the denominator
yields the amplification factor

(3.6) A(x, t)=_u(x, t)/u(X)-- 1/ g()W()d/W(X)
Xi

or
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Comparing (3.6) or i=1 with (3.7) or i---2, we obtain the simple
relation

(3.8) A(x, t)/A(x, t)=W(X)/W(X)--exp (g+g)d.
Xx

These are final orms o our exact solution of the initial value problem.
4. Special cases. 1) Amplification at the invading front. Let

us assume
(4.1) cl--c2--c0
and consider the value o u at
(4.2) x ct i.e. X x-- ct 0
or the initial value
(4.3) u(x)--O i.e. g(x)--O orx0.
Then, (3.6) or i= 1 yields

I: [exp gdld}
where
(.) X z-- et et> O.

Nquaion (4.4) is integrated o give

(4.6) A--exp [I g2()]d=exp[I u()d],
which shows the possibility of infinite growth of u, at and behind the
front if the integral is positive and infinitely large as t.

2) Collision at t=0. Let us specialize the initial value in 1) by
additional assumption
(4.7) u(x)-O i.e. g2(x)=0 for x0.
Then, it is evident from (3.4), (4.3) and (4.7) that
(4.8) u-0, u2-u(X) for X>0
and

u-u(X), u2=0 for X0.
In the region of interaction i.e.
(4.9) c2txct i.e. X0 and X20,
we have

(.o) W()-W()exp ()g, i=
>0

and

(4.11) gWd- gWd=W(X)- 1.

Therefore, (3.6) is reduced to
(4.12) A,-- W,(X,)/[WI(XI)+ W2(X0-1].
At the ront X=0 and the rear ront X--0 we have
(4.13) A--[W((--1)ct)]- and A=I at X,=0.
Differentiating A, given by (4.12) with respect to x and using (4.10)
and (4.11) we have
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(4.14) A?3A,/3x-’{--g,(X,)[1 W(X)]-g(X)W(X)}/W,(X,).
3) The predator and prey problem. When g, (i:1,2) are non-

positive, W()is a decreasing positive unction of . In this case A
and A1 are proved to be non-negative according to (3.6) and (3.8)if
X.>X, i.e. c-c.>O.

Especially when u (i-- 1, 2) are non-negative and 0, 0, u,
are non-negative and may be regarded as the population of predator
and pray running on a straight line with velocities c and c respec-
tively.

Various asymptotic behaviours of u and u as t-c have been
predicted by Yamaguti and Yoshikawa or c=2=1 and c=2.=-1
by use o comparison theorems without use o explicit solutions. On
the assumptions g__<0 and c0, some of their important results may
be summarized as ollows

i) If g and g are bounded and g is bounded away rom zero
i.e. --Mg--0 and --Mg<=O, u is bounded and u tends to
zero.

ii) I g--0 or x0 and g.(x)e L(O, c), [u[ increases infinitely
behind the front x ct.

iii) I g and g are periodic unctions of x with the same wave
length l0, u is periodic with respect to t as toc.

Proof of i). Let us write (3.7) for i-1 as

fx W()i W(X) / g()l d:(4.15)
A W(X x, W(X)

and note X.-X--ct0 as well as
exp [--M(--X)] < W()/W(X)< exp [-6(-X)]

for X1g <X, where M--M/M.
Then, we have
(4.16) e-t+(/M)(1--e-t)<A{<e-t+(M/c)[1-e-t]
i.e.

M Al+(M--8)e-t M_(M--)e-t

and rom (3.8)
(4.17) Ae-* A.Ae-.
The estimations (4.16) and (4.17) prove our assertion.

Proof of ii). We have only to note the unbounded growth of A
given by (4.6) and the continuity o A as we recede rom x--ct i.e.

X 0 and X= ct.
As (4.14) shows that

3A/3x= {-- g[1-- Wz(ct)] g.Wz(ct)}> 0
at the front, the amplification is maximum there.

Proof of iii). It is evident from the translational invariance of
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(1.1) that u and u are periodic with respect to x.
Let us keep X--x--c finite and consider the limit o (4.15) as-c, so that X--X+ctc. Then W() is exponentially small as

-.c since g()d=--a<0 are bounded awy from zero. There-

fore, (4.15) yields

(4.18) lim AI=AI ]gl()] exp (gl + g2)d d<.
If we make use of the periodicity of u=A(X)u(X) with respect to
x and its dependence only on X=x--ct it is evident that u is periodic
with respect to t; the period being 1/c.
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