136. Projective Modules and 3-fold Torsion Theories

By Yoshiki Kurata, Hisao Katayama, and Mamoru Kutami
Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1974)

Let R be a ring with identity and R-mod the category of unital left R-modules. A 3 -fold torsion theory for R-mod is a triple ($\mathfrak{K}_{1}, \mathfrak{I}_{2}, \mathfrak{T}_{3}$) of classes of left R-modules such that both $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and ($\left.\mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ are torsion theories for R-mod in the sense of Dickson [2]. A class \mathfrak{I}_{2} for which there exist classes \mathfrak{I}_{1} and \mathfrak{I}_{3} such that $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ is a 3 -fold torsion theory for R-mod will be called a TTF-class following Jans [3]. In this case, \mathscr{I}_{1}-torsion submodule $t_{1}(M)$ and \mathscr{I}_{2}-torsion submodule $t_{2}(M)$ coincide with $t_{1}(R) \cdot M$ and $r_{M}\left(t_{1}(R)\right)$ respectively for any left R-module M (cf. [4, Lemma 2.1]), where $r_{M}(*)$ denotes the right annihilator of $*$ in M.

An idempotent two-sided ideal I of R determines three classes of left R-modules

$$
\begin{aligned}
& \mathfrak{S}_{I}=\left\{{ }_{R} M \mid I M=M\right\}, \\
& \mathfrak{T}_{I}=\left\{{ }_{R} M \mid I M=0\right\}
\end{aligned}
$$

and

$$
\mathfrak{\mho}_{I}=\left\{{ }_{R} M \mid r_{M}(I)=0\right\},
$$

and $\left(\mathfrak{C}_{I}, \mathfrak{T}_{I}, \mathfrak{\mho}_{I}\right)$ is then a 3 -fold torsion theory for R-mod. In this case, the \mathfrak{C}_{I}-torsion submodule and \mathfrak{I}_{I}-torsion submodule of a left R-module M coincide with $I M$ and $r_{M}(I)$ respectively.

Recently, in his paper [1], Azumaya has proved that, among other things, for a 3 -fold torsion theory $\left(\mathfrak{C}_{I}, \mathfrak{\mho}_{I}, \mathfrak{C}_{I}\right)$ determined by the trace ideal I of a projective R-module P, a necessary and sufficient condition for \mathfrak{C}_{I} to be a TTF-class is that ${ }_{R / l_{R}(I)} P$ is a generator for $R / l_{R}(I)$-mod. In this note we shall give a similar condition for \dddot{F}_{I} to be a TTF-class and look at the result due to Azumaya again from our point of view. Throughout this note, R-modules will mean left R-modules and $l(*)(r(*))$ will denote the left (right) annihilator for $*$ in R.

We shall begin with a lemma which is in need of later discussions.
Lemma 1. Let I be a left ideal and K a right ideal in R. Then the following conditions are equivalent:
(1) $I+K=R$.
(2) For any R-module $M, I M=0$ implies that $K M=M$.

If this is the case and if we assume moreover that $I K=0$, then
(3) both I and K are idempotent two-sided ideals of R and $I=l(K)$ and $K=r(I)$, and
(4) $\mathfrak{I}_{I}=\mathfrak{C}_{K}$.

In case I is an idempotent two-sided ideal in R and K is the trace ideal of a projective R-module P, then (4) is equivalent to
(5) ${ }_{R / I} P$ is a generator for $R / I-\bmod$.

The proof is not so difficult except for the last part. (3) of this lemma is due to [1, Lemma 1]. As is easily seen, $\mathscr{I}_{I}=\mathfrak{C}_{K}$ means that $I K=0$ (or, equivalently, $I P=0$) and $\mathfrak{I}_{I} \subset \mathfrak{C}_{K}$. This also means that P is an R / I-module and is a generator for R / I-mod, since \mathfrak{C}_{K} consists of those R-modules which are epimorphic images of direct sums of copies of P.

We shall say that a 3 -fold torsion theory ($\mathfrak{T}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}$) for R-mod has length 2 if $\mathfrak{I}_{1}=\mathfrak{T}_{3}$.

The first halves of the following propositions may be seen as slightly different versions of [1, Theorem 3].

Proposition 2. Let $\left(\mathfrak{T}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ be a 3 -fold torsion theory for R mod. Then \mathfrak{I}_{3} is a TTF-class if and only if

$$
t_{1}(R)+r\left(t_{1}(R)\right)=R
$$

Moreover, if this is the case, $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ has length 2 if and only if $r\left(t_{1}(R)\right) \cdot t_{1}(R)=0$.

Proof. Suppose that \mathfrak{I}_{3} is a TTF-class. Then there exists a class \mathfrak{I} of R-modules such that $\left(\mathfrak{T}_{2}, \mathfrak{I}_{3}, \mathfrak{T}\right)$ is also a 3 -fold torsion theory for R-mod and so by [4, Lemma 2.1] $\mathfrak{I}_{2}=\mathfrak{C}_{r\left(t_{1}(R)\right)}$. On the other hand, $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ is a 3 -fold torsion theory for R-mod and so $\mathfrak{I}_{2}=\mathfrak{T}_{t_{1}(R)}$. Hence, by Lemma 1, we have that $t_{1}(R)+r\left(t_{1}(R)\right)=R$.

Conversely, assume that $t_{1}(R)+r\left(t_{1}(R)\right)=R$. Since $t_{1}(R) \cdot r\left(t_{1}(R)\right)$ $=0$, again by Lemma 1 we have that $r\left(t_{1}(R)\right)$ is an idempotent two-sided ideal in R and $\mathfrak{T}_{2}=\mathfrak{T}_{t_{1}(R)}=\mathfrak{C}_{r\left(t_{1}(R)\right)}$. From this it follows that $\mathfrak{I}_{3}=\mathfrak{T}_{r\left(t_{1}(R)\right)}$ and hence \mathfrak{I}_{3} is in fact a TTF-class.

Suppose now that \mathfrak{I}_{3} is a TTF-class and that $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ has length 2. Then, by definition, $\mathfrak{C}_{t_{1}(R)}=\mathfrak{F}_{t_{1}(R)}$ and this also coincides with $\widetilde{T}_{r\left(t_{1}(R)\right)}$ by Lemma 1. Hence $r\left(t_{1}(R)\right) \cdot t_{1}(R)=0$. Conversely, suppose that \mathfrak{I}_{3} is a TTF-class and that $r\left(t_{1}(R)\right) \cdot t_{1}(R)=0$. Then, by Lemma 1 , $\mathfrak{T}_{r\left(t_{1}(R)\right)}$ $=\mathfrak{C}_{t_{1}(R)}$ and this also coincides with $\mathscr{\mho}_{t_{1}(R)}$ again by Lemma 1. This shows that $\mathfrak{I}_{1}=\mathfrak{I}_{3}$ and thus $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ has length 2 by definition.

The last part of this proposition has already pointed out in [6, Corollary 1].

Proposition 3. Let $\left(\mathfrak{T}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ be a 3 -fold torsion theory for R mod. Then \mathfrak{I}_{1} is a TTF-class if and only if

$$
l\left(t_{1}(R)\right)+t_{1}(R)=R
$$

Moreover, if this is the case, $\left(\mathfrak{T}_{1}, \mathfrak{I}_{2}, \mathfrak{T}_{3}\right)$ has length 2 if and only if $t_{1}(R) \cdot l\left(t_{1}(R)\right)=0$.

Proof. Suppose that \mathbb{I}_{1} is a TTF-class. Then there exists a class
\mathfrak{I} of R-modules such that $\left(\mathfrak{T}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is also a 3 -fold torsion theory for R-mod. If we denote by $t(M)$ the \mathfrak{T}-torsion submodule of an R-module M, then, by Proposition 2, $t(R)+r(t(R))=R$. Since $r(t(R))=t_{1}(R)$ and since $t(R) \cdot r(t(R))=0$, we have that $t(R)=l\left(t_{1}(R)\right.$). Thus, $l\left(t_{1}(R)\right)+t_{1}(R)$ $=R$.

Conversely, assume that $l\left(t_{1}(R)\right)+t_{1}(R)=R$. Since $l\left(t_{1}(R)\right) \cdot t_{1}(R)$ $=0$, it follows from Lemma 1 that $l\left(t_{1}(R)\right.$) is an idempotent two-sided ideal in R and $\mathfrak{T}_{l\left(t_{1}(R)\right)}=\mathfrak{C}_{t_{1}(R)}=\mathfrak{T}_{1}$. Thus, \mathfrak{T}_{1} is in fact a TTF-class.

Suppose now that \mathfrak{Z}_{1} is a TTF-class and that $\left(\mathfrak{R}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ has length 2. Then, by definition, $\mathfrak{C}_{t(R)}=\mathfrak{T}_{t_{1}(R)}$ and hence $0=t_{1}(R) \cdot t(R)$ $=t_{1}(R) \cdot l\left(t_{1}(R)\right)$. Conversely suppose that \mathfrak{I}_{1} is a TTF-class and that $t_{1}(R) \cdot l\left(t_{1}(R)\right)=0$. Then, by Lemma $1, \mathfrak{I}_{l\left(t_{1}(R)\right)}=\mathfrak{C}_{t_{1}(R)}$ and this also coincides with $\mathfrak{\vartheta}_{t_{1}(R)}$ again by Lemma 1 . This shows that $\mathfrak{T}_{1}=\mathfrak{T}_{3}$ and thus $\left(\mathfrak{T}_{1}, \mathfrak{I}_{2}, \mathfrak{T}_{3}\right)$ has length 2 by definition.

Proposition 4. Let $\left(\mathfrak{F}_{1}, \mathfrak{I}_{2}\right)$ be a hereditary torsion theory for R mod such that any simple R-module belonging to \mathfrak{T}_{1} has the projective cover. Then \mathfrak{I}_{2} is a TTF-class if and only if there exists a projective R-module P with trace ideal I such that $\mathfrak{T}_{2}=\mathfrak{T}_{I}$.

Proof. Let $\left\{S_{\alpha}\right\}_{\alpha \in A}$ be a complete set of representatives for the isomorphism classes of simple R-modules belonging to \mathfrak{I}_{1}, P denotes the direct sum of projective covers of $S_{\alpha}, \alpha \in A$, and I denotes its trace ideal. Suppose that \mathfrak{I}_{2} is a TTF-class. Then, by [5, Proposition 1], \mathfrak{I}_{1} is closed under minimal epimorphisms and P belongs to \mathfrak{I}_{1}. Hence $\mathfrak{I}_{2} \subset \mathfrak{I}_{I}$.

If we assume that there is an R-module M such that $I M=0$, i.e., $\operatorname{Hom}_{R}(P, M)=0$, and that $t_{1}(M) \neq 0$. Then we can find an $x(\neq 0)$ in $t_{1}(M)$ and a simple R-module S belonging to \mathfrak{I}_{1} such that

$$
R x \xrightarrow{f} S \longrightarrow 0
$$

is exact. Let us denote by $P(S)$ the projective cover of S and by π the minimal epimorphism of $P(S)$ to S. Then there exists a homomorphism h of $P(S)$ to $R x$ such that $f \circ h=\pi$. We can extend h to a homomorphism h^{*} of P to M naturally, but by assumption $h^{*}=0$ and so π $=0$, a contradiction. This shows that $\mathfrak{I}_{2}=\mathfrak{T}_{I}$. Since the "if" part is clear, this completes the proof of the proposition.

Remark. It follows from this proposition that any hereditary 3fold torsion theory ($\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}$) for R-mod over a semiperfect ring R is determined by the trace ideal I of a certain projective R-module P. However, in this case we can show that

$$
l(I)+I=R
$$

and hence, by Proposition 3, \mathfrak{I}_{1} is in fact a TTF-class. This result has already obtained by [5, Proposition 2].

To see this, let $e_{1}, e_{2}, \cdots, e_{n}$ be an orthogonal set of primitive idem-
potents of R whose sum is 1 , the identity of R. We may assume that $I \neq 0$. Then $e_{i} \in I$ if and only if $e_{i} R=e_{i} I$, or equivalently, $e_{i} I \neq 0$. For, suppose that $e_{i} I \neq 0$. Then there exists an $a(\neq 0)$ in $e_{i} I$. Since $R a$ $\subset I, R a$ belongs to $\mathfrak{I}_{1}=\mathfrak{C}_{I}$ and hence $I a=I(R a)=R a$. So a is in $I a$ and we can find some x in I such that $a=x a$. Since $\left(1-e_{i} x\right) a=0$, if we assume that $e_{i} I \subset e_{i} N$, where N denotes the Jacobson radical of R, then $e_{i} x$ is in N and hence $a=0$, a contradiction. Since $e_{i} N$ is a unique maximal submodule of $e_{i} R, e_{i} I$ must be equal to $e_{i} R$.

Now $I=e_{1} I+\cdots+e_{n} I$ and there exists some i such that $e_{i} I \neq 0$. So we may assume that $e_{i} I \neq 0,1 \leqq i \leqq m$, and $e_{i} I=0, m+1 \leqq i \leqq n$. Then $I=e_{1} I+\cdots+e_{m} I=e_{1} R+\cdots+e_{m} R=e R$, where $e=e_{1}+\cdots+e_{m}$, and so $l(I)=R(1-e)$. Thus we have $l(I)+I=R$.

Theorem 5. Let P be a projective R-module with trace ideal I such that any simple R-module belonging to \mathfrak{I}_{I} has the projective cover. Then
(1) $\mathfrak{\mho}_{I}$ is a TTF-class if and only if there exists a projective R module Q with trace ideal $r(I)$ such that ${ }_{R / I} Q$ is a generator for R / I-mod.
(2) If this is the case, then $\left(\mathfrak{C}_{I}, \mathfrak{I}_{I}, \mathfrak{\mho}_{I}\right)$ has length 2 if and only if $r(I) \cdot P=0$, and this is so if and only if ${ }_{R / r(I)} P$ is a generator for $R / r(I)-$ mod.

Proof. Suppose that $\mathfrak{\mho}_{I}$ is a TTF-class. Then, by Proposition 4, there exists a projective R-module Q with trace ideal K such that \mathfrak{F}_{I} $=\mathfrak{I}_{K}$. Hence $\mathfrak{T}_{I}=\mathfrak{C}_{K}$ and $I+K=R$ by Lemma 1 . Since K belongs to $\mathfrak{C}_{K}, I K=0$ and again by Lemma 1 we have $K=r(I)$. The rest of (1) follows from the same lemma.
(2) follows from Proposition 2 and Lemma 1. This completes the proof of the theorem.

Finally, we shall close the paper with the following theorem whose first half is due to [1, Proposition 11].

Theorem 6. Let P be a projective R-module with trace ideal I. Then,
(1) \mathfrak{E}_{I} is a TTF-class if and only if ${ }_{R / l(I)} P$ is a generator for $R / l(I)$ mod.
(2) If this is the case and if we assume moreover that R is semiperfect, then there exists a projective R-module Q with trace ideal $l(I)$, and $\left(\mathfrak{C}_{I}, \mathfrak{I}_{I}, \mathfrak{\jmath}_{I}\right)$ has length 2 if and only if $I Q=0$, and this is so if and only if ${ }_{R / I} Q$ is a generator for $R / I-\bmod$.

Proof. (1) By Proposition 3, \mathfrak{C}_{I} is a TTF-class if and only if $l(I)+I=R$, and this is so if and only if $\mathfrak{I}_{l(I)}=\mathfrak{C}_{I}$ by Lemma 1. This means that ${ }_{R / l(I)} P$ is a generator for $R / l(I)$-mod again by Lemma 1.
(2) Suppose that \mathfrak{C}_{I} is a TTF-class and that R is semiperfect. Then, as was pointed out in the proof of [5, Proposition 2], there exists
a projective R-module Q with trace ideal K such that $\mathfrak{C}_{I}=\mathfrak{T}_{K}$. Hence we have $K=l(I)$. The rest of (2) follows from Lemma 1 and Proposition 3. This completes the proof of the theorem.

Added in proof. After submitting this paper, we became aware that Theorems 5 and 6 can be proved without restricted conditions. Its proof will appear somewhere.

References

[1] G. Azumaya: Some Properties of TTF-Classes. Proc. of the Conf. on Orders, Group Rings and Related Topics, Ohio State Univ. 1972 (Lecture Notes in Math., 353, Springer-Verlag, Berlin, Heidelberg, New York), 72-83 (1973).
[2] S. E Dickson: A torsion theory for abelian categories. Trans. Amer. Math. Soc., 121, 223-235 (1966).
[3] J. P. Jans: Some aspects of torsion. Pacific J. Math., 15, 1249-1259 (1965).
[4] Y. Kurata: On an n-fold torsion theory in the category ${ }_{R} M$. J. Algebra, 22, 559-572 (1972).
[5] E. A. Rutter, Jr.: Torsion theories over semiperfect rings. Proc. Amer. Math. Soc., 34, 389-395 (1972).
[6] --: Four fold torsion theories (to appear).

