136. Projective Modules and 3-fold Torsion Theories

By Yoshiki KURATA, Hisao KATAYAMA, and Mamoru KUTAMI Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

Let R be a ring with identity and R-mod the category of unital left R-modules. A 3-fold torsion theory for R-mod is a triple $(\mathfrak{X}_1, \mathfrak{X}_2, \mathfrak{X}_3)$ of classes of left R-modules such that both $(\mathfrak{X}_1, \mathfrak{X}_2)$ and $(\mathfrak{X}_2, \mathfrak{X}_3)$ are torsion theories for R-mod in the sense of Dickson [2]. A class \mathfrak{X}_2 for which there exist classes \mathfrak{X}_1 and \mathfrak{X}_3 such that $(\mathfrak{X}_1, \mathfrak{X}_2, \mathfrak{X}_3)$ is a 3-fold torsion theory for R-mod will be called a TTF-class following Jans [3]. In this case, \mathfrak{X}_1 -torsion submodule $t_1(M)$ and \mathfrak{X}_2 -torsion submodule $t_2(M)$ coincide with $t_1(R) \cdot M$ and $r_M(t_1(R))$ respectively for any left R-module M (cf. [4, Lemma 2.1]), where $r_M(*)$ denotes the right annihilator of *in M.

An idempotent two-sided ideal I of R determines three classes of left R-modules

$$\mathfrak{C}_{I} = \{ {}_{R}M | IM = M \}, \\ \mathfrak{T}_{I} = \{ {}_{R}M | IM = 0 \}$$

and

$$\mathfrak{F}_I = \{ {}_R M | r_M(I) = 0 \},$$

and $(\mathfrak{C}_I, \mathfrak{T}_I, \mathfrak{F}_I)$ is then a 3-fold torsion theory for *R*-mod. In this case, the \mathfrak{C}_I -torsion submodule and \mathfrak{T}_I -torsion submodule of a left *R*-module *M* coincide with *IM* and $r_M(I)$ respectively.

Recently, in his paper [1], Azumaya has proved that, among other things, for a 3-fold torsion theory $(\mathfrak{S}_I, \mathfrak{F}_I, \mathfrak{S}_I)$ determined by the trace ideal *I* of a projective *R*-module *P*, a necessary and sufficient condition for \mathfrak{S}_I to be a TTF-class is that $_{R/l_R(I)}P$ is a generator for $R/l_R(I)$ -mod. In this note we shall give a similar condition for \mathfrak{F}_I to be a TTF-class and look at the result due to Azumaya again from our point of view. Throughout this note, *R*-modules will mean left *R*-modules and l(*)(r(*))will denote the left (right) annihilator for * in *R*.

We shall begin with a lemma which is in need of later discussions. Lemma 1. Let I be a left ideal and K a right ideal in R. Then the following conditions are equivalent:

(1) I + K = R.

(2) For any R-module M, IM = 0 implies that KM = M.

If this is the case and if we assume moreover that IK=0, then

(3) both I and K are idempotent two-sided ideals of R and I=l(K)and K=r(I), and

[Vol. 50,

(4) $\mathfrak{T}_I = \mathfrak{C}_K$.

In case I is an idempotent two-sided ideal in R and K is the trace ideal of a projective R-module P, then (4) is equivalent to

(5) $_{R/I}P$ is a generator for R/I-mod.

The proof is not so difficult except for the last part. (3) of this lemma is due to [1, Lemma 1]. As is easily seen, $\mathfrak{T}_I = \mathfrak{C}_K$ means that IK = 0 (or, equivalently, IP = 0) and $\mathfrak{T}_I \subset \mathfrak{C}_K$. This also means that P is an R/I-module and is a generator for R/I-mod, since \mathfrak{C}_K consists of those R-modules which are epimorphic images of direct sums of copies of P.

We shall say that a 3-fold torsion theory $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ for *R*-mod has length 2 if $\mathfrak{T}_1 = \mathfrak{T}_3$.

The first halves of the following propositions may be seen as slightly different versions of [1, Theorem 3].

Proposition 2. Let $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ be a 3-fold torsion theory for Rmod. Then \mathfrak{T}_3 is a TTF-class if and only if

$$t_1(R) + r(t_1(R)) = R.$$

Moreover, if this is the case, $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ has length 2 if and only if $r(t_1(R)) \cdot t_1(R) = 0$.

Proof. Suppose that \mathfrak{T}_3 is a TTF-class. Then there exists a class \mathfrak{T} of *R*-modules such that $(\mathfrak{T}_2, \mathfrak{T}_3, \mathfrak{T})$ is also a 3-fold torsion theory for *R*-mod and so by [4, Lemma 2.1] $\mathfrak{T}_2 = \mathfrak{C}_{r(t_1(R))}$. On the other hand, $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ is a 3-fold torsion theory for *R*-mod and so $\mathfrak{T}_2 = \mathfrak{T}_{t_1(R)}$. Hence, by Lemma 1, we have that $t_1(R) + r(t_1(R)) = R$.

Conversely, assume that $t_1(R) + r(t_1(R)) = R$. Since $t_1(R) \cdot r(t_1(R)) = 0$, again by Lemma 1 we have that $r(t_1(R))$ is an idempotent two-sided ideal in R and $\mathfrak{T}_2 = \mathfrak{T}_{t_1(R)} = \mathfrak{C}_{r(t_1(R))}$. From this it follows that $\mathfrak{T}_3 = \mathfrak{T}_{r(t_1(R))}$ and hence \mathfrak{T}_3 is in fact a TTF-class.

Suppose now that \mathfrak{T}_3 is a TTF-class and that $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ has length 2. Then, by definition, $\mathfrak{C}_{t_1(R)} = \mathfrak{F}_{t_1(R)}$ and this also coincides with $\mathfrak{T}_{r(t_1(R))}$ by Lemma 1. Hence $r(t_1(R)) \cdot t_1(R) = 0$. Conversely, suppose that \mathfrak{T}_3 is a TTF-class and that $r(t_1(R)) \cdot t_1(R) = 0$. Then, by Lemma 1, $\mathfrak{T}_{r(t_1(R))}$ $= \mathfrak{C}_{t_1(R)}$ and this also coincides with $\mathfrak{F}_{t_1(R)}$ again by Lemma 1. This shows that $\mathfrak{T}_1 = \mathfrak{T}_3$ and thus $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ has length 2 by definition.

The last part of this proposition has already pointed out in [6, Corollary 1].

Proposition 3. Let $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ be a 3-fold torsion theory for Rmod. Then \mathfrak{T}_1 is a TTF-class if and only if

$$(t_1(R)) + t_1(R) = R.$$

Moreover, if this is the case, $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ has length 2 if and only if $t_1(R) \cdot l(t_1(R)) = 0$.

Proof. Suppose that \mathfrak{T}_1 is a TTF-class. Then there exists a class

 \mathfrak{T} of *R*-modules such that $(\mathfrak{T}, \mathfrak{T}_1, \mathfrak{T}_2)$ is also a 3-fold torsion theory for *R*-mod. If we denote by t(M) the \mathfrak{T} -torsion submodule of an *R*-module *M*, then, by Proposition 2, t(R) + r(t(R)) = R. Since $r(t(R)) = t_1(R)$ and since $t(R) \cdot r(t(R)) = 0$, we have that $t(R) = l(t_1(R))$. Thus, $l(t_1(R)) + t_1(R) = R$.

Conversely, assume that $l(t_1(R)) + t_1(R) = R$. Since $l(t_1(R)) \cdot t_1(R) = 0$, it follows from Lemma 1 that $l(t_1(R))$ is an idempotent two-sided ideal in R and $\mathfrak{T}_{l(t_1(R))} = \mathfrak{C}_{t_1(R)} = \mathfrak{T}_1$. Thus, \mathfrak{T}_1 is in fact a TTF-class.

Suppose now that \mathfrak{T}_1 is a TTF-class and that $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ has length 2. Then, by definition, $\mathfrak{C}_{t(R)} = \mathfrak{T}_{t_1(R)}$ and hence $0 = t_1(R) \cdot t(R)$ $= t_1(R) \cdot l(t_1(R))$. Conversely suppose that \mathfrak{T}_1 is a TTF-class and that $t_1(R) \cdot l(t_1(R)) = 0$. Then, by Lemma 1, $\mathfrak{T}_{l(t_1(R))} = \mathfrak{C}_{t_1(R)}$ and this also coincides with $\mathfrak{F}_{t_1(R)}$ again by Lemma 1. This shows that $\mathfrak{T}_1 = \mathfrak{T}_3$ and thus $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ has length 2 by definition.

Proposition 4. Let $(\mathfrak{T}_1, \mathfrak{T}_2)$ be a hereditary torsion theory for *R*-mod such that any simple *R*-module belonging to \mathfrak{T}_1 has the projective cover. Then \mathfrak{T}_2 is a TTF-class if and only if there exists a projective *R*-module *P* with trace ideal *I* such that $\mathfrak{T}_2 = \mathfrak{T}_I$.

Proof. Let $\{S_{\alpha}\}_{\alpha \in A}$ be a complete set of representatives for the isomorphism classes of simple *R*-modules belonging to \mathfrak{T}_1 , *P* denotes the direct sum of projective covers of S_{α} , $\alpha \in A$, and *I* denotes its trace ideal. Suppose that \mathfrak{T}_2 is a TTF-class. Then, by [5, Proposition 1], \mathfrak{T}_1 is closed under minimal epimorphisms and *P* belongs to \mathfrak{T}_1 . Hence $\mathfrak{T}_2 \subset \mathfrak{T}_I$.

If we assume that there is an *R*-module *M* such that IM=0, i.e., $\operatorname{Hom}_{R}(P, M)=0$, and that $t_{1}(M)\neq 0$. Then we can find an $x \ (\neq 0)$ in $t_{1}(M)$ and a simple *R*-module *S* belonging to \mathfrak{T}_{1} such that

$$Rx \xrightarrow{f} S \longrightarrow 0$$

is exact. Let us denote by P(S) the projective cover of S and by π the minimal epimorphism of P(S) to S. Then there exists a homomorphism h of P(S) to Rx such that $f \circ h = \pi$. We can extend h to a homomorphism h^* of P to M naturally, but by assumption $h^*=0$ and so $\pi = 0$, a contradiction. This shows that $\mathfrak{T}_2 = \mathfrak{T}_I$. Since the "if" part is clear, this completes the proof of the proposition.

Remark. It follows from this proposition that any hereditary 3fold torsion theory $(\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3)$ for *R*-mod over a semiperfect ring *R* is determined by the trace ideal *I* of a certain projective *R*-module *P*. However, in this case we can show that

$$l(I) + I = R$$

and hence, by Proposition 3, \mathfrak{T}_1 is in fact a TTF-class. This result has already obtained by [5, Proposition 2].

To see this, let e_1, e_2, \dots, e_n be an orthogonal set of primitive idem-

potents of R whose sum is 1, the identity of R. We may assume that $I \neq 0$. Then $e_i \in I$ if and only if $e_i R = e_i I$, or equivalently, $e_i I \neq 0$. For, suppose that $e_i I \neq 0$. Then there exists an $a \ (\neq 0)$ in $e_i I$. Since $Ra \ \subset I$, Ra belongs to $\mathfrak{T}_1 = \mathfrak{C}_I$ and hence Ia = I(Ra) = Ra. So a is in Ia and we can find some x in I such that a = xa. Since $(1 - e_i x)a = 0$, if we assume that $e_i I \subset e_i N$, where N denotes the Jacobson radical of R, then $e_i x$ is in N and hence a = 0, a contradiction. Since $e_i N$ is a unique maximal submodule of $e_i R$, $e_i I$ must be equal to $e_i R$.

Now $I = e_1I + \cdots + e_nI$ and there exists some *i* such that $e_iI \neq 0$. So we may assume that $e_iI \neq 0$, $1 \leq i \leq m$, and $e_iI = 0$, $m+1 \leq i \leq n$. Then $I = e_1I + \cdots + e_mI = e_1R + \cdots + e_mR = eR$, where $e = e_1 + \cdots + e_m$, and so l(I) = R(1-e). Thus we have l(I) + I = R.

Theorem 5. Let P be a projective R-module with trace ideal I such that any simple R-module belonging to \mathfrak{T}_I has the projective cover. Then

(1) \mathfrak{F}_I is a TTF-class if and only if there exists a projective *R*-module *Q* with trace ideal r(I) such that $_{R/I}Q$ is a generator for R/I-mod.

(2) If this is the case, then $(\mathfrak{C}_I, \mathfrak{T}_I, \mathfrak{F}_I)$ has length 2 if and only if $r(I) \cdot P = 0$, and this is so if and only if $_{R/r(I)}P$ is a generator for R/r(I)-mod.

Proof. Suppose that \mathfrak{F}_I is a TTF-class. Then, by Proposition 4, there exists a projective *R*-module *Q* with trace ideal *K* such that $\mathfrak{F}_I = \mathfrak{T}_K$. Hence $\mathfrak{T}_I = \mathfrak{C}_K$ and I + K = R by Lemma 1. Since *K* belongs to \mathfrak{C}_K , IK = 0 and again by Lemma 1 we have K = r(I). The rest of (1) follows from the same lemma.

(2) follows from Proposition 2 and Lemma 1. This completes the proof of the theorem.

Finally, we shall close the paper with the following theorem whose first half is due to [1, Proposition 11].

Theorem 6. Let P be a projective R-module with trace ideal I. Then,

(1) \mathbb{G}_I is a TTF-class if and only if $_{R/l(I)}P$ is a generator for R/l(I)-mod.

(2) If this is the case and if we assume moreover that R is semiperfect, then there exists a projective R-module Q with trace ideal l(I), and $(\mathfrak{S}_I, \mathfrak{T}_I, \mathfrak{F}_I)$ has length 2 if and only if IQ=0, and this is so if and only if $_{R/I}Q$ is a generator for R/I-mod.

Proof. (1) By Proposition 3, \mathbb{C}_I is a TTF-class if and only if l(I)+I=R, and this is so if and only if $\mathbb{T}_{l(I)}=\mathbb{C}_I$ by Lemma 1. This means that $_{R/l(I)}P$ is a generator for R/l(I)-mod again by Lemma 1.

(2) Suppose that \mathfrak{C}_I is a TTF-class and that R is semiperfect. Then, as was pointed out in the proof of [5, Proposition 2], there exists a projective *R*-module *Q* with trace ideal *K* such that $\mathbb{G}_I = \mathbb{T}_K$. Hence we have K = l(I). The rest of (2) follows from Lemma 1 and Proposition 3. This completes the proof of the theorem.

Added in proof. After submitting this paper, we became aware that Theorems 5 and 6 can be proved without restricted conditions. Its proof will appear somewhere.

References

- G. Azumaya: Some Properties of TTF-Classes. Proc. of the Conf. on Orders, Group Rings and Related Topics, Ohio State Univ. 1972 (Lecture Notes in Math., 353, Springer-Verlag, Berlin, Heidelberg, New York), 72-83 (1973).
- [2] S. E Dickson: A torsion theory for abelian categories. Trans. Amer. Math. Soc., 121, 223-235 (1966).
- [3] J. P. Jans: Some aspects of torsion. Pacific J. Math., 15, 1249-1259 (1965).
- [4] Y. Kurata: On an *n*-fold torsion theory in the category $_{R}M$. J. Algebra,
- 22, 559-572 (1972).
 [5] E. A. Rutter, Jr.: Torsion theories over semiperfect rings. Proc. Amer. Math. Soc., 34, 389-395 (1972).
- [6] ——: Four fold torsion theories (to appear).