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134. On Submodules over an Asano Order of a Ring™

By Kentaro MURATA

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

1. Let R be a ring with unity quantity, and let o be a regular
maximal order of R. The term ideal means a non-zero fractional two-
sided o-ideal in B. We shall use small German letters a, b, ¢ with or
without suffices to denote ideals in B. The inverse of an ideal a will
be denoted by a~!, and a* will denote a~!-!. Two ideals a and b are said
to be quasi-equal if a-'=b6"'; in symbol: a~b. The term submodule
means a two-sided o-submodule which contains at least one regular
element of R. A submodule M is said to be closed if whenever aCM
implies a*C M. It is then clear that every submodule is closed when
the arithmetic holds for o (cf. [1, § 2]). For any two closed submodules
M, and M, we define a product M,-M, to be the set-theoretical union of
all ideals (37, a;b,)* where o;CM, and 6,CM, (i=1, ---,n). Now the
set G of all ideals a such that a=qa* forms a commutative group under
the multiplication “o” defined by aob=(ab)*=(a*b*)*; because G is a
(conditionally) complete I-group under the above multiplication and the
inclusion (cf. p. 91 in [5]). Hence M,oM,=M,-M,, and if the ascending
chain condition in the sense of quasi-equality holds for integral ideals,
the set MM of all closed submodules forms a commutative l-semigroup

under the above multiplication and the set-inclusion (cf. Lemmas 5.1
and 5.2 in [2]).

Let B be the set of all prime ideals which are not quasi-equal to o,
let [3] be the cardinal number of 3, and let Z_.. be the set-theoretical
union of the rational integers Z and —oco. Then the complete direct
sum Py Z_., (P|-copies) of Z_,, is an l-semigroup under the addition
[m,]+[n,]=[m,+n,] and the partial order [m,]>[n]Jom,<n, for all
pe®, where m,,n,eZ_,. Let P} Z_., be the set of all vectors [m,]
such that m,<0 for almost all p ¢ B. Then it forms an I-subsemigroup
of Py Z._...

The aim of the present note is to prove the following

Theorem. If the ascending chain condition in the sense of quasi-
equality (cf. p. 109 in [1]) holds for integral ideals, the l-semigroup IN
of all non-zero closed submodules is isomorphic to DFZ._., as an l-semi-
group. If in particular the arithmetic holds for o, the l-semigroup IN
of all submodules (containing regular elements) is isomorphic to P§ Z._
as an l-semigroup, and every submodule M e IR is written as follows:

*  Dedicated to professor Kiiti Morita on his 60th birthday.
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M= ] p® (veZP:_ p”("))op (%)

PEP +
where v(p)=vy(p) is the p-coordinate of the vector in @fF Z_. which

corresponds to M by the above isomorphism, P, =P (M) is the prime
ideals with vy (p) >0, P_=P_(M) is the prime ideals with — oo <yy(p)
<0, op i2s the P-component of o (cf. [1, §3]) for the set P=P,(M)
UP,(M)UP_(M) the prime ideals with vy(p)=0, and 3 denotes the
restricted direct sum.

P.(M) is a finite set for each submodule M, but both P_(M) and
Py(M) are not necessarily finite.

The first half of Theorem is a generalization of [3, Theorem 1] in
the case of Dedekind domains (cf. [4, § 2]) to a non-commutative case.

2. Proof of Theorem. Let a be an ideal, and let a~a*=l°]p“,
a e Z, be the factorization of a* into prime ideals yp’s with p<o, where
II,a, means (I1;0,)* (cf. p. 13 in [2]). In the following we use »(p; a) to
denote «, the p-exponent of a*. Then we have

@) v(p; a)=0 for almost all p e P.

@) vlp; )=v(p; a*).

®3) v(p; a+0)=Min {v(p; @), v(p; b)}.

@) u(p; ab)=v(p; a)+v(p; D).

(5) aCb implies v(p; a)>v(p; D).

6) If u(p; a)>v(p;0) for all pe P, then aZH*.

(D If v(p; a)=v(p; b) for all pe P, then a~b.

Ad (3): It follows from (a4-B)*=(*+06*)*. Ad@): It follows
from (ab)* =(a*H*)* (cf. p. 13 in [2]). (5) is immediate from (3). The
other properties are evident.

The initial stage in our proof will be a generalization of v(p; ) for
submodules. For any M ¢ It we define

v(p; M)=inf {v(p; a) |aC M}.
Then, fixing M and running p through L, v(p; M) is considered as a
map from P into Py Z_... In this state it is convenient to use v,(p) or
vy instead of v(p; M). For any fixed ideal a, in M we have v,(p)
<u(p; ap). Hence vy(p)<0 for almost all p e PB.

Let ¢ be a map from P into Py Z_.. such that ¢(p) <0 for almost
all pe P, and let M<{s) be the set-theoretical union of all ideals a such
that v(p; a)>a(p) for all peP. Then M<{s) is a closed submodule in
our sense. For, we let b be an ideal contained in M{¢>. Then by the
ascending chain condition in the sense of quasi-equality and by the
regularity of o, we can choose a finite number of elements b,, - -, b, in
b such that at least one of the b; is regular and b*=(b,, -, b,)*.
Taking a; such that a; 3 b;, a;& M<s)», we have b* = (b, ---,b,)*
St aP)* =00t a)*. Henee v(p; 5*)>u(p; (o0, a)®) =u(p; X7 ay)
=Min {v(p; a,)}>0a(p). Thus we get 6*C Mc).
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We note here that for each ideal aC My, > there exists an ideal ¢
such that v(p; )<v(p; a), cCM. For, if there is no such ideal we have
v(p; O)>v(p; a) for all (non-zero) ideal cC M. Since v(p; a)# — oo, the
set of all v(p; ¢), cC M, has a lower bound. Hence there exists an in-
teger n, such that v(p; M)=n,=u(p; ¢,) for a suitable ¢(, =M. By the
assumption we have n,=v(p; c))>v(p; a). However aC M{yy> implies
v(p; a)>vy(p) =n, which is a contradiction.

Now we prove M{yyy=M. MCM{vy) is evident. Conversely,
let a be an arbitrary (non-zero) ideal in M<{v,>, and let p,, -- -, p,, be
the all prime ideals p such that v(p; a)#0, peB. Then we can choose
a suitable ideal ¢, such that v(p,; cF)<v(p,; ), ¢ &M. Next we let
Pme1s -+ *» Pn be all prime ideals p, if there exists, such that v(p; ¢;)>0
and p does not appear among P, ---,p,. Then we can take suitable
ideals ¢; such that v(p;; ) <v(p;; @), M (1=2, ..-,n). Then clearly
c=6+6+ -+, &M, and ¢*CM. For any p,; (j=1,---,n), we have
v(py; o) <ulpy; ) <v(py;a), and for any pe P different from yp,
(G=1,-.-,m), we have v(p; )<v(p; c)<0=p(p; a). Thus we obtain
aCc*, aC M as desired.

Next we prove vy,,=o. Letp, -:-,p, be the set of all the prime
ideals p such that o(p)>0, peP. We form c=p{¥o...op:%  Then
evidently ¢*=c and v(p;; ) =a(p;) fori=1, ---,n. If p=£p, ¢i=1,...,n),
peP, then v(p; )=0>0(p). Hence c=M<s), and hence v(p;; Mc))
<u(p;; )=0o(py) for i=1, ... ,n. If p'#p, (=1, ---,n), p’ e P, then put-
ting a=(cp’**?)*, we have v(p;; a)=a(p;) and v(p’; a)=c¢(p’). For any p”’
such that p”+#p, G=1, - .-, n), p" =9, p” € P, we have v(p”; a)=0>a(p”).
Hence aC M<{c), and hence v(p'; M{o)) <v(y’; a)=a(p’) for an arbitrary
p£p, @=1,---,m), p¥eP. Above all we get v(p; M{s))<a(p) for all
peP. Thus we have vy ,,<o. vy,,>0 is evident by the definition of
Vi Therefore we obtain vy, =c as desired.

By the above argument we have

M—yy—>Myy>=M, 0> Mo )y =0.
Accordingly the map My, gives a bijection from IN to the set of all
o. Now it is clear that the set of all vectors [¢(p)1={a(p) | p € B} coincides
with @F Z_... We shall show the map f:
M- f(M)=1lvy(p)]

gives an [-semigroup-isomorphism from I to BFZ_... For, let M,,
M, e IN, and take an arbitrary (non-zero) ideal ¢ contained in M,-M,.
Then by using the ascending chain condition in the sense of quasi-
equality for integral ideals we can take an ideal (3 7., a;,)* which con-
tains ¢. In fact by the ascending chain condition in the sense of
quasi-equality c¢* is generated by a finite number of elements x,, - -+, 2,,
in ¢ (some of z, is regular), i.e., c*=(x,, - -+, Z)*, £, €c. Then by the
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definition of M,oM,, we can take (3 7® a{®b{)* which contains
(k=1,---, m)wherea®C M, and b» C M,. Hencex,; e > ,r, G 1% aPp®)*
(j =1, ... , 'm), and cC * = (931, ceey, xm)* c (ka=1 (Zﬁ’? agk)ﬁék))*)*
=D B a®h®)* = (357.,a;0,)*. Then wehavev(p; ¢) >v(p; (Xr-1a:0,)%)
= Min {v(p; ap) + v(p; )} > inf {(p; a;) | a;, & My} + inf {u(p; b)) |b; © M.}
=u(p; M) +v(p; M,). This implies v(p; M,0M,)=inf {v(p; ¢) |*C Mo M,}
>u(p; M) +u(p; My). Since v(p; a)+v(p; D) =vlp; ab)>v(p; M,oM,) for
any aC M, and b M,, we have v(p; M) +v(p; b)=inf,c,, {v(p;a)+2(p;0)}
>v(p; Mo M), v(p; M)+v(p; M)>v(p; M,oM,). Hence the opposite
inequality is true. It is evident that f is order-preserving. f is there-
fore an l-semigroup-isomorphism from I to P Z_... If the arithmetic
holds for o, then the l-semigroup I of all submodules containing
regular elements is isomorphic to @ Z_.. as an l-semigroup.

In order to prove the last part of the theorem we show that a sub-
module M is a subring containing o, if and only if the coordinates of
the vector f(M)=[v,(p)] consists only of 0 and —oo; and in this case
M =0, the P-component of o where P=P,(M). We suppose that M is
a subring which contains o strictly. Since there exists a prime ideal
p such that p~'C M, p e P (cf. Hilfssatz 6, p. 119 in [1]), we have p~"C M
for all » e Z*, the positive integers. Hence we obtain vy(p)
=inf {u(p; a) |[aCM}<inf {p(p; p ™™ |n e Z*}=inf{—n|neZ*}=—oco. If
p~! is not contained in M, we can show vy(p)=0 as follows: Since
o0& M, M contains a pure fractional ideal. Let F be the set of the pure
fractional ideals in M. Then evidently v,(p)<inf {v(p;0)|be F}=e.
To prove the opposite inequality we take an arbitrary ideal a in M.
Then there exists a pure fractional ideal o’ such that aCTo’'CM (e.g.
o’=a+0). Then we have v(p; a)>v(p; a)>«a. Hence we get vy(p)
=inf {y(p; b) |6 € F}. Suppose that there exists an ideal b € F such that
p~! appears among the prime factors of b,b=p~'-b’, say. Then we
have p~'CHC M, a contradiction. Hence v(p; 6)=0 for allbe F. We
have therefore v, (1) =0 as desired. Conversely let M be a submodule
such that the coordinates of f(M) consists only of 0 and —oco. An
ideal a is contained in M if and only if both P(M)Z Py(a) U P, (a) and
P_(M)STPy(a)UP.(a) hold, where P_. (M)={pecPBlvy(h)=—o0}. In
order to show that M is a subring of R it is sufficient to show that ab
C M for any ideals a and b in M. Because, since o is regular there is
an ideal which is contained in M and contains an arbitrary fixed
element of M. Take two non-zero ideals a and 0 in M. Then since
F@b)=f(a)+ f(6) we can show P(M)CPy(ad)UP, (ab) and P_.(M)
CP(ab)UP,.(ab). This means abCM. M=op, P=Py(M), is easy to
see. The representation (x) is obtained by using the additive property
of f. This completes the proof.
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Remark. Let M be a submodule such that |P_(M)]is finite. Then
2@ =(]] p—®)~!, and M is the P-component of the ideal

l_[ pv(v) n pv(h).

PEP 4 pEP
Moreover M =a, (the P-component of an ideal o) if and only if
a= n pv(v) n pv(b) n pe,
PEP 4 PEP - PEQ
where @ is a finite subset of P_.(M) and p is an integer. It is then

obvious that a submodule M is a P-component of an ideal if and only
if both P__(0p)=P_.(M) and | Py(0p) —Py(M)|< co hold.
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