133. On the Fundamental Units of Real Quadratic Fields

By Masakazu Kutsuna College of General Education, Chukyo University (Comm. by Kenjiro Shoda, M. J. A., Oct. 12, 1974)

1. Let $Q(\sqrt{D})$, (D>0 square-free rational integer), be a real quadratic field and put $D=n^2+r$ $(-n< r\leq n)$. Then, if $4n\equiv 0 \pmod r$ holds, the fundamental unit $\varepsilon_D>1$ of $Q(\sqrt{D})$ is well known ([1]) and such a real quadratic field $Q(\sqrt{D})$ is called R-D type. On the other hand, for any given real quadratic field $Q(\sqrt{D})$, its fundamental unit can be calculated by the continued fraction expansion of \sqrt{D} .

In this note, we shall first describe the fundamental units of all real quadratic fields in a similar fashion to *R-D* type, and give next its relation between continued fraction expansion. Finally, we shall give a generalization of a result of Morikawa [3] concerned with these facts.

2. The following theorem is a generalization of a result of Degert [1]:

Theorem 1. For any given positive square-free integer D, let v_0 be the least positive integer such that $v_0^2D = n_0^2 + r_0$ holds with integers n_0, r_0 satisfying $-n_0 < r_0 \le n_0$ and $4n_0 \equiv 0 \pmod{r_0}$. Then the fundamental unit $\varepsilon_D > 1$ of $\mathbf{Q}(\sqrt{D})$ is of the following form:

$$egin{aligned} arepsilon_D = & n_0 + v_0 \sqrt{D}, \quad N arepsilon_D = -\operatorname{sgn} r_0 \quad & ext{for } |r_0| = 1, \text{ (except for } D = 5, \ v_0 = 1), \ arepsilon_D = & (n_0 + v_0 \sqrt{D})/2, \quad N arepsilon_D = -\operatorname{sgn} r_0 \quad & ext{for } |r_0| = 4, \ arepsilon_D = & (2n_0^2 + r_0) + 2n_0 v_0 \sqrt{D}]/|r_0|, \quad N arepsilon_D = & 1 \quad & ext{for } |r_0| \neq 1, 4. \end{aligned}$$

Remark. In the special case of $v_0=1$, this result coincides with Degert's.

Proof. Let $\varepsilon_D = (t_0 + u_0 \sqrt{D})/2$ be the fundamental unit of $\mathbf{Q}(\sqrt{D})$ and ε_1 be the right-hand side of a formula for ε_D in Theorem 1. Then, it is easily shown that $u_0^2D = t_0^2 \mp 4$, $4t_0 \equiv 0 \pmod{4}$ and that ε_1 is a unit of $\mathbf{Q}(\sqrt{D})$. Here, if we suppose $\varepsilon_D \neq \varepsilon_1$, then it yields a contradiction. For, in the case of $|r_0| > 4$, we get

$$\varepsilon_1 = \left[(2n_0^2 + r_0) + 2n_0 v_0 \sqrt{D} \right] / |r_0| \ge \varepsilon_D^2 = (t_0^2 \pm 2 + t_0 u_0 \sqrt{D}) / 2.$$

Hence, we have $n_0v_0 > t_0u_0$. On the other hand, since v_0 is the least positive integer such that $v_0^2D = n_0^2 + r_0$, $-n_0 < r_0 \le n_0$, $4n_0 \equiv 0 \pmod{r_0}$, we get $v_0 < u_0$ and $n_0 < t_0$, hence we have $n_0v_0 < t_0u_0$. This is a contradiction. In other cases, we can easily induce contradiction similarly.

3. For any given D, it is generally difficult to find v_0 in Theorem 1, but if we use the continued fraction expansion of \sqrt{D} , v_0 is easily

obtained. In particular, if the length k of the period in the continued fraction expansion of \sqrt{D} is even (k=2m), then v_0 in Theorem 1 is determined by the (m-1)th convergent in the continued fraction expansion of \sqrt{D} as follows:

Theorem 2. Let D be a positive square-free integer such that $D \not\equiv 5 \pmod{8}$ and suppose that D has a prime divisor p such that $p \equiv 3 \pmod{4}$. Let k be the length of the period in the regular continued fraction expansion of \sqrt{D} , A_{ν}/B_{ν} be its ν th convergent and let $(\sqrt{D}+P_{\nu})/Q_{\nu}$ be its ν th complete quotient. Then, k is even (k=2m) and v_0 in Theorem 1 is equal to B_{m-1} . Moreover, $|r_0|$ in Theorem 1 is equal to Q_m which is equal to neither 1 nor 4 and the fundamental unit ε_D of $Q(\sqrt{D})$ is of the following form:

$$\varepsilon_{D} = \left[(2A_{m-1}^{2} + (-1)^{m-1}Q_{m}) + 2A_{m-1}B_{m-1}\sqrt{D} \right]/Q_{m}, \qquad N\varepsilon_{D} = 1.$$

Proof. From the assumption on D, it is easily proved that the length k of the period is even (k=2m) and that the fundamental unit ε_D of $\mathbf{Q}(\sqrt{D})$ is of the form $\varepsilon_D = t_0 + u_0 \sqrt{D}$, $(t_0, u_0 \text{ integers})$. Hence, we have $\varepsilon_D = A_{k-1} + B_{k-1} \sqrt{D}$ and $N\varepsilon_D = 1$. On the other hand, we have $Q_m \neq 1$ and the following relations (cf. [5]):

$$2A_{m-1}\equiv 2D\equiv 0 \pmod{Q_m},$$

 $B_{m-1}^2D=A_{m-1}^2+(-1)^{m-1}Q_m.$

From these relations, we have $Q_m \neq 4$. Let ε_1 be the right-hand side of the formula for ε_D in Theorem 2, then ε_1 is a unit of $Q(\sqrt{D})$ and ε_1 is equal to ε_D , since $1 < \varepsilon_1 < \varepsilon_D^2$. Therefore, v_0 in Theorem 1 is equal to B_{m-1} and $|r_0| = Q_m$.

4. As a sufficient condition for $Q_m=2$, we obtain

Theorem 3.10 Let D=p or 2p, where p is a prime number with $p\equiv 3\pmod 8$ (resp. $\equiv 7\pmod 8$). Let k=2m be the even length of the period in the regular continued fraction expansion of \sqrt{D} and A_{ν}/B_{ν} be its ν th convergent. Then, $Q_m(=|r_0|)$ in Theorem 2 is equal to 2 and the fundamental unit ε_D of $\mathbf{Q}(\sqrt{D})$ is of the following form:

$$\varepsilon_D = A_{m-1}^2 + 1 + A_{m-1}B_{m-1}\sqrt{D}$$
 (resp. $A_{m-1}^2 - 1 + A_{m-1}B_{m-1}\sqrt{D}$), $N\varepsilon_D = 1$.

Proof. Since $2D\equiv 0\pmod{Q_m}$ and D=p or 2p, we have $Q_m=1,2,4$, p,2p or 4p. On the other hand, $1< Q_m < \sqrt{D}$ and $Q_m \neq 4$ hold. Hence, we get $Q_m=2$. Thus, from Theorem 2, we have $\varepsilon_D=A_{m-1}^2\pm 1+A_{m-1}B_{m-1}\sqrt{D}$. Here, in the case of $p\equiv 3\pmod{8}$, $A_{m-1}^2-1+A_{m-1}B_{m-1}\sqrt{D}$ is not a unit, since $A_{m-1}^2-DB_{m-1}^2\neq -2\pmod{8}$. Therefore, ε_D is equal to $A_{m-1}^2+1+A_{m-1}B_{m-1}\sqrt{D}$. Similarly, we can prove the other case.

Remark. In the case of D=pq, (p < q), or 2pq, (2p < q), with $D \not\equiv 5 \pmod 8$, where p and q are odd prime numbers with p or $q \equiv 3 \pmod 4$, Nakahara shows in [4] that Q_m in Theorem 2 is equal to one

¹⁾ M. Yamauchi conjectured this fact and orally informed it to author.

of the three numbers 2, p and 2p. Using this fact, he proves that the fundamental unit of $Q(\sqrt{D})$ has one of the following six forms:

$$egin{aligned} A_{m-1}^2 \pm 1 + A_{m-1} B_{m-1} \sqrt{D}\,, & rac{2}{p} \, A_{m-1}^2 \pm 1 + rac{2}{p} \, A_{m-1} B_{m-1} \sqrt{D}\,, & rac{1}{p} \, A_{m-1}^2 \pm 1 \ + rac{1}{p} A_{m-1} B_{m-1} \sqrt{D}\,. \end{aligned}$$

In the case of real quadratic fields $Q(\sqrt{D})$ with $N\varepsilon_D = -1$, we can obtain similar result to Theorem 3 as follows:

Theorem 4. Let $D=p_1$ or $2p_2$, where p_1 and p_2 are prime numbers with $p_1\equiv 1\pmod 8$ and $p_2\equiv 5\pmod 8$. Let k=2m+1 be the odd length of the period in the regular continued fraction expansion of \sqrt{D} and A_ν/B_ν be its ν th convergent. Then, the fundamental unit ε_D is of the following form:

$$\varepsilon_{D} = A_{m}B_{m} + A_{m-1}B_{m-1} + (B_{m}^{2} + B_{m-1}^{2})\sqrt{D}, \qquad N\varepsilon_{D} = -1.$$

Proof. Let $\sqrt{D} = [b_0, \overline{b_1, \cdots, b_k}]$ be the regular continued fraction expansion of \sqrt{D} , where k is the length of the period. From the condition on D, it is evident that k is odd (k=2m+1) and $\varepsilon_D = A_{k-1} + B_{k-1}\sqrt{D}$. On the other hand, it is well known that b_1, \cdots, b_{k-1} are symmetric: $b_{k-\nu} = b_{\nu}$, $(1 \le \nu \le k-1)$. Hence, we get $A_{k-1} = A_m B_m + A_{m-1} B_{m-1}$ and $B_{k-1} = B_m^2 + B_{m-1}^2$. Therefore, we have the Theorem 4.

5. Finally we give a generalization of Morikawa's result from our view-point.

Theorem 5.²⁾ For any positive integer a>0, put $a^2\pm 2=b^2D$, where D is square-free. If $D\neq 2$, 3, and 6, and if at least one of the following conditions (a) and (b) is satisfied, then $Q_m(=|r_0|)$ in Theorem 2 is equal to 2 and $\varepsilon=a^2\pm 1+ab\sqrt{D}$ is the fundamental unit of $\mathbf{Q}(\sqrt{D})$:

- (a) $a < (2D-1)\sqrt{D-2}$ or b < 2D-3,
- (β) $a=p^k$ or $2p^k$, where p is a prime number and k is a positive integer.

Proof. Let $\varepsilon = (t + u\sqrt{D})/2 > 1$ be a unit of $Q(\sqrt{D})$ with $N\varepsilon = 1$. Put $\varepsilon^n = (t_n + u_n\sqrt{D})/2$, $(n \ge 1)$. Then t_n is a monic polynomial of t with integral coefficients and has the following properties:

(i) t_n is a monotonically increasing function of t,

(ii)
$$t_n-2=(t-2)\{(t-2)^{(n-1)/2}+\cdots+\frac{1}{24}(n^3-n)(t-2)+n\}^2$$
 for odd

n,

(iii)
$$t_n + 2 = (t+2)\{(t+2)^{(n-1)/2} - \cdots \pm \frac{1}{24}(n^3 - n)(t+2) \mp n\}^2$$
 for odd

n.

From these facts, we can prove our Theorem 5 immediately.

²⁾ Morikawa [2] proved this theorem in the special case that α is a prime number.

References

- [1] G. Degert: Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92-97 (1958).
- [2] M. Kutsuna: On the fundamental units of a certain type of real quadratic fields (Informal notes in Japanese). Suron Hanti, 1, 116-138 (1971).
- [3] R. Morikawa: On the fundamental units of certain real quadratic number fields (to appear).
- [4] T. Nakahara: On the fundamental units and an estimate of the class numbers of real quadratic fields. Rep. Fac. Sci. Eng. Saga Univ., 1, 104-116 (1973).
- [5] O. Perron: Die Lehre von den Kettenbrüchen, Band I. Teubner Verlag (1954).