131. On a Theorem of Wallace and Tsushima

By Kaoru Motose

Department of Mathematics, Shinshu University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

1. As was pointed out in Math. Reviews 22 (1961), #12146, the proof of [8; Theorem] contains an error but the theorem holds good for solvable groups and groups with *p*-complement. Recently, Y. Tsushima [6] has showed that the theorem is still true for *p*-solvable groups. In the present paper, we shall give an alternative proof to the above fact, and several related results on the radical of a group algebra. We are indebted to Mr. Y. Ninomiya and Mr. Y. Tsushima for their useful advice.

Let K be an algebraically closed field of characteristic p > 0, and G a finite group with a normal subgroup N such that |N| is not a power of p and G/N is a p-group. Further, G_p will represent a p-Sylow subgroup of G, KG the group algebra of G over K, J(KG) the radical of KG, and [J(KG): K] the K-dimension of J(KG).

2. Now, let $\{T_1, T_2, \dots, T_s\}$ be the set of all non-conjugate irreducible KN-modules, and G_i the inertia group of T_i , where T_1 corresponds to the 1-representation. By [4; (III. 3.1)] each T_i can be extended uniquely to an irreducible module \hat{T}_i of G_i . We shall prove first the following:

Lemma 1 (cf. [2, (50.2)]). $\{\hat{T}_1^g, \hat{T}_2^g, \dots, \hat{T}_s^g\}$ is the set of all irreducible modules of G.

Proof. At first, we shall show that \hat{T}_i^g is irreducible (cf. [5, Lemma 2]). Let M be a maximal KG-submodule of \hat{T}_i^g . By $\operatorname{Hom}_{KG_i}(\hat{T}_i, \hat{T}_i^g/M) \cong \operatorname{Hom}_{KG}(\hat{T}_i^g, \hat{T}_i^g/M) \neq 0$, there exists a KG_i -submodule S_i of \hat{T}_i^g/M , which is KG_i -isomorphic to \hat{T}_i . By Clliford's theorem, \hat{T}_i^g/M is KN-isomorphic to a direct sum of e-copies of $\sum_{r=1}^t \oplus T_i^{(x_r)}$, where $\{x_r\}$ is a left cross section of G_i in G. Therefore, $(G:G_i)[T_i:K] = [\hat{T}_i^g:K] \cong [\hat{T}_i^g/M:K] = e(G:G_i)[T_i:K]$ and $[\hat{T}_i^g:K] = [\hat{T}_i^g/M:K]$, which means that M = 0 and \hat{T}_i^g is irreducible. Next, we shall prove that the above modules are all non-isomorphic. Let $\{y_i | 1 \le l \le r\}$ is a left cross section of G_j in G. Then $\operatorname{Hom}_{KG}(\hat{T}_i^g, \hat{T}_j^g) \cong \operatorname{Hom}_{KG_i}(\hat{T}_i, \hat{T}_j^g) \subseteq \operatorname{Hom}_{KN}(T_i, \hat{T}_j^g) = 0$ for $i \ne j$. Hence, it remains only to prove that s is the number of p-regular classes of G. Let $\{S_1, S_2, \dots, S_k\}$ be the set of all irreducible representations of N, ω_i Brauer character of S_i . Then ω_i is conjugate to ω_j if and only if S_i is conjugate to S_j . By Brauer's permutation lemma [3, (12.1)], the number of orbits of a

permutation group G/N acting on $\{S_1, S_2, \dots, S_k\}$ is the number of orbits of a permutation group G/N acting on the set of *p*-regular classes of N. Noting that every *p*-regular element of G is contained in N, we can see that *s* is the number of *p*-regular classes of *G*.

Concerning the K-dimension of J(KG), we obtain the following Theorem 2. (1) $[J(KG):K] = |G| - \sum_{i=1}^{s} (G:G_i)^2 [T_i:K]^2$.

(2) $|G| - |N| + [J(KN): K] \ge [J(KG): K] \ge (G:N)([J(KN): K] + 1) - 1.$

Proof. (1) is evident by Lemma 1.

(2) $[J(KG): K] = |G| - \sum_{i=1}^{s} (G: G_i)^2 [T_i: K]^2 \le |G| - \sum_{i=1}^{s} (G: G_i)$ $[T_i: K]^2 = |G| - |N| + [J(KN): K]$, which proves the first inequality. Next, we shall show the second one. $[J(KG): K] = |G| - \sum_{i=1}^{s} (G: G_i)^2$ $[T_i: K]^2 \ge |G| - 1 - (G: N) \sum_{i=2}^{s} (G: G_i) [T_i: K]^2 = |G| - 1 - (G: N) (|N| - [J(KN): K] - 1) = (G: N)([J(KN): K] + 1) - 1.$

3. A pair (G, N) is called large (resp. small) if and only if [J(KG):K] = |G| - |N| + [J(KN):K] (resp. [J(KG):K] = (G:N)([J(KN):K] + 1) - 1). These conditions are characterized as follows:

Theorem 3. (1) (G, N) is large if and only if $G=N \cdot C_G(a)$ for every p-regular element a of N.

(2) (G, N) is small if and only if $C_G(a) \subseteq N$ for every p-regular element a of N-1.

Proof. (1) If (G, N) is large, then $G_i = G$ for every *i*. By Brauer's permutation lemma [3, (12.1)], $\mathbb{S}^h = \mathbb{S}$ for every *p*-regular class \mathbb{S} of *N* and every element *h* of *G*. Hence, $(G: C_G(a)) = (N; C_N(a))$ and *G* $= N \cdot C_G(a)$ for $a \in \mathbb{S}$. Conversely, if $G = N \cdot C_G(a)$ and \mathbb{S} is a conjugate class of *N* containing a *p*-regular element *a*, then $\mathbb{S}^h = \mathbb{S}$ for every element *h* of *G*. Thus, by Brauer's permutation lemma, $G_i = G$ for every *i* and (G, N) is large by Theorem 2(1).

(2) If (G, N) is small, then $G_i = N$ for $i \neq 1$. By Brauer's permutation lemma, $\mathbb{S}^h \neq \mathbb{S}$ for every *p*-regular class $\mathbb{S} \neq 1$ of *N* and $h \in G - N$. Thus, $(G: C_G(a)) = |\bigcup_{h \in G} \mathbb{S}^h| = (G: N) \cdot (N: C_N(a))$ and $C_G(a) = C_N(a) \subseteq N$ for $a \in \mathbb{S}$. Conversely, assume that $C_G(a) \subseteq N$ for every *p*-regular element $a \neq 1$ of *N*. If \mathbb{S} is the conjugate class of *N* containing *a*, then $|\bigcup_{h \in G} \mathbb{S}^h| = (G: C_G(a)) = (G: N)(N: C_N(a))$ and $\mathbb{S}^h \neq \mathbb{S}$ for $h \in G - N$. Thus, by Brauer's permutation lemma, $G_i = N$ for $i \neq 1$ and (G, N) is small by Theorem 2(1).

Next Theorem 4 is fundamental in this paper.

Theorem 4. Assume that N is a p'-group.

(1) (G, N) is large if and only if G is a direct product of N and G_p

(2) (G, N) is small if and only if G is a Frobenius group with kernel N and complement G_p .

Proof. (1) If G is a direct product of N and G_p , then the assertion is trivial by Theorem 2(1). Conversely, if (G, N) is large then by

K. Motose

Theorem 3(1), $G = N \cdot C_G(a)$ for all $a \in N$ and $C_G(a)/C_N(a) \cong G/N \cong G_p$. Thus, $C_G(a) = C_N(a) \cdot xG_p x^{-1}$, and we may assume $x \in N$ by $G = N \cdot G_p$. Hence, a is contained in $xC_G(G_p)x^{-1} \cap N = xC_N(G_p)x^{-1}$. Accordingly, $N = \bigcup_{i=1}^{l} x_i C_N(G_p)x_i^{-1}$, where $\{x_1G_px_1^{-1} = G_p, x_2G_px_2^{-1}, \dots, x_lG_px_l^{-1}\}$ is the set of all p-Sylow subgroups of G and x_i are elements of N. Thus, we can see that $N = x_1C_N(G_p)x_1^{-1} = C_N(G_p)$ by $N = \bigcup_{i=1}^{l} x_iC_N(G_p)x_i^{-1}$ and hence G is a direct product of N and G_p .

(2) is a direct consequence of Theorem 3(2) (cf. the proof of [7, Theorem 2]).

The proof of the following is immediate, and will be omitted.

Lemma 5. B is a normal p-subgroup of a finite group A, then [J(KA):K]=|A|-|A/B|+[J(K(A/B)):K].

As a combination of Theorem 4 and Lemma 5, we obtain the next:
Corollary 6. Assume that a p-Sylow subgroup N_p of N is normal.
(1) (G, N) is large if and only if G/N_p is a direct product of N/N_p

and G_p/N_p (i.e. G_p is normal in G).

(2) (G, N) is small if and only if G/N_p is a Frobenius group with kernel N/N_p and complement G_p/N_p .

Next Lemma is trivial

Lemma 7. Let $A \supseteq B \supseteq C$ be a series of normal subgroups of a finite group A such that A/B and B/C are p-groups. Then (A, C) is large (resp. small) if and only if both (A, B) and (B, C) are large (resp. small).

The following is a combination of Lemma 7 and Theorem 4(2).

Corollary 8. Let N be a Frobenius group with kernel $N_{p'}$ and complemet N_{p} . Then, (G, N) is small if and only if G is a Frobenius group with kernel $N_{p'}$ and complement G_{p} .

4. In this section, we shall give an alternative proof to the fact indicated by Y. Tsushima ([6, Theorem 2]).

Theorem 9. Let H be a p-solvable group, and u_1 the degree of principal indecomposable module U_1 such that $U_1/J(U_1)$ is a trivial module. Then, $[J(KH):K] = |H| - |H|/u_1$ if and only if H_p is normal in H.

Proof. If H_p is normal, then $u_1 = |H_p|$ (cf. [1, p. 583]) and $[J(KH):K] = (H:H_p)(|H_p|-1) = |H|-|H|/u_1$. Conversely, assume that $[J(KH):K] = |H|-|H|/u_1$. We shall proceed by induction concerning the order of H. Since H is p-solvable, there exists a normal subgroup \tilde{H} such that $p = (H:\tilde{H})$ or $p \nmid (H:\tilde{H})$. We shall distinguish between two cases.

Case 1. $p \nmid (H:H); u_1 \geq \tilde{u}_1$ by Fobenius reciprocity law (cf. [1, p. 583]), where \tilde{u}_1 is defined for \tilde{H} as similar as u_1 was done for H. Thus, by [1, p. 580], $[J(K\tilde{H}):K] \leq |\tilde{H}| - |\tilde{H}|/\tilde{u}_1 \leq |\tilde{H}| - |\tilde{H}|/u_1 = [J(KH):K]/(H:\tilde{H}) = [J(K\tilde{H}):K]$ and hence $[J(K\tilde{H}):K] = |\tilde{H}| - |\tilde{H}|/u_1$. Therefore,

 \tilde{H}_p is normal in \tilde{H} by induction hypothesis. Since \tilde{H}_p is characteristic in \tilde{H} , $H_p = \tilde{H}_p$ is normal in H.

Case 2. $p = (H: \tilde{H})$: By Theorem 2(2) and $u_1 = p \cdot \tilde{u}_1$ (cf. [4, (III. 3.8]), $[J(KH):K] \leq |H| - |\tilde{H}| + [J(K\tilde{H}):K] \leq |H| - |\tilde{H}| + |\tilde{H}| - |\tilde{H}|/\tilde{u}_1 = |H| - |H|/u_1 = [J(KH):K]$. Hence, $[J(K\tilde{H}):K] = |\tilde{H}| - |\tilde{H}|/u_1$ and (H, \tilde{H}) is large. Thus, \tilde{H}_p is normal in \tilde{H} and hence H_p is normal in H by Corollary 6(1).

References

- R. Brauer and C. Nesbitt: On the modular characters of groups. Ann. of Math., (2) 42, 556-590 (1941).
- [2] C. W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras. Wiley, New York (1962).
- [3] W. Feit: Characters of Finite Groups. Benjamin, New York (1967).
- [4] ——: Representations of Finite Groups. Yale University (1969), Mimeographed.
- [5] Y. Tsushima: Radicals of group algebras. Osaka J. Math., 4, 179-182 (1967).
- [6] ——: Some Topics in Modular Group Rings (in Japanese). Symposium on Theory of Groups, Hakone (1972).
- [7] D. A. R. Wallace: Note on the radical of a group algebra. Proc. Cambridge Philos. Soc., 54, 128-130 (1958).
- [8] ——: On the radical of a group algebra. Proc. Amer. Math. Soc., 12, 133– 137 (1961).

No. 8]