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1. Statement of results. In this note, h* will denote either the
unoriented cobordism theory * or the usual cohomology theory with
Z.-coefficients H*(;Z2). The corresponding equivariant cohomology
theory for Z.-spaces will be denoted by h*

Let M be a manifold and a an involution on M. We define an
embedding z/: M-M2--M M by z/(x)=(x, ax). Then z/is equivariant
with respect to the involution a on M and the involution T on M which
is defined by T(Xl, x)--(x, x) Let zl hq- M-/(M) denote the
Gysin homomorphism or z/, where m----dimM. We put (a) z/ (1)
h rMZaZ2, ].

In the present note we shall give an explicit formula for O(a) and
apply it to get theorems of the Borsuk-Ulam type. Our results
generalize those of Nakaoka [3], [4]. From the formula for 8(a) we
shall also derive a sort of integrality theorem concernining the fixed
point set of a; see Theorem 4. Detailed accounts will appear else-
where.

Let S be the infinite dimensional sphere with the antipodal invo-
lution. The projection z:" S M-S M induces the Gysin homo-

Z2
morphism ,. h*(M2)-h*z(M2) and the usual homomorphism *" hz(M )
h*(M). Let d: MM be the diagonal map. Since d(M) is the
fixed point set of T, h*z(d(M)) is isomorphic to h*z.(pt) ) h*(M) and d

h*(pt)

induces d*" h*z.(MZ)h*z(pt) ) h*(M).
h*(pt)

Lemma 1. The homomorphism
z*@d*" h*z(M)h*(M)@(h*z(pt) @ h*(M))

h*(pt)

is in]ective.
We denote by S the multiplicative set {w[k>_ 1} in h*z(pt)=h*(P)

where w is the universal first Stiefel-Whitney class. I X is a Z-
space then h*z(X) is an h(pt)-module and we can consider the localized
ring S-lh(X) o h*z.(X) with respect to S Note that h* (pt) is isomor-
phic to a formal power series ring h*(pt)[[wl]] and h(pt) @ h*(M)

h*(pt)

1) In this note we work in the smooth category. All manifolds will be con-
nected, compact and without boundary unless otherwise stated.
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is canonically embedded in (S hz(pt)) (M).
h*(pt)

To state our main theorem we need some notations. Let P" h(M)
--.h(M) be the Steenrod-tom Dieck operation; see [4], [6]. For u
e h(M) we define Po(u) to be d*P(u)/w. Then P0 is extended to a
ring homomorphism Po" h*(M)-(S-h*z(Pt)))h*(M). For a real

*(pt)

vector bundle over a CW-complex X its h*-theory Wu classes v()
e h*(X) are defined in a similar way as in [5]. The Wu classes of the
tangent bundle of a manifold X will be denoted by v(X). Finally we
define a(x) e h*(pt)[[x]] by

F(x, y) , a(x)y
o<j

where F is the formal group law of the theory h*. For a multi-index
a--(a, a.,...) we put a(x) I-I a(x),l(a)-, and lal= ]a, cf. [6].

Theorem 2. Let M be a manifold and a an involution on M. Let
F be the fixed point set of a. F is a disjoint union of submanifolds
F, ...,F.

i) r*O(a) e h*(M) is given by

*O(z)-- z/I(1)
where the zl: on the right-hand side is the usual Gysin homomorphism
h*(M)-.h*(M). If {u} is a homogeneous h*(pt) basis of h*(M) and
z/:(1)-- au u with a e h*(pt) then the a’s satisfy the relation, ac-- (the Kronecker )

where c--p:(u U a*u) with p" M-pt.
ii) d*6(a)e h(pt) h*(M)(S-h(pt)) ) h*(M)

h*(pt) k*(pt)

is given by

w(-(")+I"I)a"(w)Po(]:(v.(Ft))
d*0(a)-w = , w(")/ I..a.(w)Po(v.(M))

where ] is the Gysin homomorphism of the inclusion ]" FM and m
dim M.
Remark 3. In Theorem 2, when the theory h* is the usual co-

homology theory H*( Z), the formula for d*t(a) reduces to

d*O(a)--w?Po ]:(v,(F)) v,(M)
=0 / (. =0

where f dim F.
Theorem 4. Let M,a and F be as in Theorem 2. Suppose that

h*--H*( Z). If we write

i=1 s=0 / s=0 i=0

where u e H(M Z), then we must have
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u-O or i> m.
2

Corollary 5. Under the situation of Theorem 4 the element
O(a) e H(M; Z) is given by

()- w?-P(u) +
i=O

where is characterized by the conditions
a) e ,.-image

and
b) 7r*/l !(1) - Uml2 X Uml2.
Corollary 6. Under the situation of Theorem 4 assume moreover

that dim F<dim M/2 for all i. Then
Ef123, ],.(v(r)) O

i=1 s=O

and O(a) e H*z(M2; Z2) is characterized by the conditions
a) (a) e z:-image

and
b) zc*O(a) =A!(1).
Corollary 7. Let M be an m-manifold which is a Z.-homology

sphere and a an involution on M. Then, in the usual homology theory
H*( Z), the element O(a) e Hz(M ZO is given by

()_ z!(1 if) if a is not trivial,
w?+ :(1 X if) if a is trivial,

where Z e H(M Z) is the cofundamental class.
Now let N be another manifold with an involution r and f" N--.M

a continuous map. We put
A(f)--{y[y e N, fv(y)--af(y)}

and define an equivariant map f" N-M by f(y)-(f(y), fr(y)). The
following is undamental or our theorems of the Borsuk-Ulam type.

Theorem 8. If A(f)-- then the class f*O(a) e h(N) vanishes.

Corollary 9. Let f denote the restriction of f on the fixed point
set F(r) of r. Suppose that we have

in H*z,(pt)(R)H*(F(r) ZO then the set A(f) is not empty.
When the involution r on N is free the module h(N) is canonically

identified with h*(N/Z,.).
Corollary 10. Let M and N be manifolds of the same dimension

m. Let a be an involution on M such that dim F< m for all com-

ponents F of the fixed point set of a. Let be a free involution on
N and f" N--M a continuous map. Then, in the usual cohomology,



540 A. HATTORI [Vol. 50,

the evaluation of the class f*8(a) e H(N/Z2) on the fundamental class
[N/Z2] is given by

([N/Z], f*O(a))=2(f)
where 2(f) is the equivariant Lefschetz number of f as defined in [3].
Consequently if (f) =/= O, then A(f) .

Corollary 1 1. Let M be an m-manifold which is a Z-homology
sphere with an involution a. Let N be an m-manifold with a free
involution r and f" NM a map. Then we have

([N/Z] /*(a)}-- 1+ deg f if a is trivial,
[deg f if a is not trivial.

Consequently if a is not trivial and deg f0, then A(f).
2. Indication of proofs. Lemma 1 is a consequence o the follow-

ing structure theorem or hz(M and a localization theorem due to tom
Dieck [2] applied to the diagonal map d.

Theorem 12. In hz(M the union ( w-kernel) coincides

with u-image which is isomorphic to h*(M)/h*(M)r through . The
homorphism * restricted on u-image is in]ective. The quotient

hz(M* ) / (u-image) is a free h(pt)-module and is generated by P-image.
Its rank is equal to the rank of the h*(pt)-module h*(M).

Theorem 12 is proved using the Gysin exact sequence of the double
covering S MS M and the following properties of , u* and

Zu

P:
*(uX v)=u X v + v X u,
*P(u) u x u.

Part i) of Theorem 2 ollows from the commutativity o the diagram

h*(M) h*(M)

h(M) ’h(M)
which holds since u is a covering projection.

In order to prove Part ii) we consider the submanifolds A(M) and
d(M) o M. They are invariant under the action T. Their inter-
section is canonically identified with F. Let ]’" FA(M) and ]" F
d(M) be the inclusions. Let ,, and , be the normal bundles of ]’
and d respectively. We see that A(M) and d(M) cut each other clean-
ly along F, that is, ,, is a subbundle of ]*,. Thus we have the excess
bundle E-]*,/,, and it follows rom the clean intersection ormula
(cf. [6]) that

d*A(1)--](e(E))
where e(E) e h* (pt) h*(F) is the h*-theory Euler class of the bundleZ

k*(pt)

E with Z-action. In our situation we have
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Lemma 13. The bundle E is isomorphic to the normal bundle, of the diagonal map d: F-F where the Z-action on , is induced
from T.

From Lemma 13 and the clean intersection ormula applied to the
commutative diagram

d
F ,F

MdM2
we infer that

(,) d’A,(1)--d* ((]2):(d(1)))d(1)
in (S-lh(pt) ( h*(M). But we have a ormula due to Nakaoka [5]

k*(p,t)

which expresses d:(1) in terms o v.(M), Po and a"(w) and a similar one
for d(1). Using these in (,) we obtain the ormula in Part ii) o
Theorem 2.

Finally Theorem 8 ollows rom the act that f*8(a) is the Poincar
dual (in the equivariant cohomology) of ]-(A(M))--A(f) in N.
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