166. Note on Approximation of Nonlinear Semigroups

By Kazuo Kobayasi

Department of Mathematics, Waseda University, Tokyo

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1974)

Let X be a Banach space with a norm | |, and let $\{T(t); t \ge 0\}$ be a contraction (nonlinear) semigroup on a closed convex subset C of X, namely a family of operators from C into C satisfying the following conditions:

- (i) T(0) = I (the identity), T(t+s) = T(t)T(s) for $t, s \ge 0$;
- (ii) $|T(t)x T(t)y| \leq |x-y|$ for $t \geq 0$ and $x, y \in C$;
- (iii) $\lim_{t \downarrow 0} T(t)x = x$ for $x \in C$.

For each λ , h > 0 we define

 $A_h = h^{-1}(T(h) - I)$ and $J_{\lambda,h} = (I - \lambda A_h)^{-1}$.

It is well known that $J_{\lambda,h}$ is a contraction operator from C into C and that A_h generates a unique contraction semigroup $\{T_h(t); t \ge 0\}$ on C such that $(d/dt)T_h(t)x=A_hT_h(t)x$ for $x \in C$ and $t\ge 0$ (e.g. see [1] and [3]). The purpose of the present note is to prove the following

Theorem. For each $x \in C$, we have

(a)
$$T(t)x = \lim_{h \downarrow 0} T_h(t)x$$

uniformly on every bounded interval of $[0, \infty)$,

(b) $T(t)x = \lim_{h \downarrow 0} \{(1-t)I + tT(h)\}^{[1/h]}x$

uniformly in $t \in [0, 1]$, and

(c) $T(t)x = \lim_{(\lambda,h)\to(0,0)} (I - \lambda A_h)^{-[t/\lambda]}x$

uniformly on every bounded interval of $[0, \infty)$, where [] denotes the Gaussian bracket.

Remark. These results were obtained for $x \in \overline{E}$ by I. Miyadera [3], where $E = \{x \in C; |A_h x| = O(1) \text{ as } h \downarrow 0\}$. Recently Y. Kobayashi [2] showed that (a) holds true for $x \in C$ by using an advanced convergence theorem.

We now set for $t \ge 0$ and $x \in C$

 $\gamma(t) = 8 \cdot \sup \{ |T(\eta)x - x|; 0 \leq \eta \leq t \}.$

Clearly $\gamma(t)$ is non-decreasing and $\gamma(t) \downarrow 0$ as $t \downarrow 0$ by (iii). The following lemma is in Crandall-Liggett [1; Lemma 3.3].

Lemma. For $x \in C$ and $\delta > 0$

$$|J_{\lambda,h}x-x| \leq \gamma(2\delta)$$
 if $\lambda, h < \delta$.

To prove Theorem we start from the following inequalities which are found in [3; (3.4), (3.6) and one in p. 257]:

K. KOBAYASI

(1) $|T_h(t)x - T([t/h]h)x| \leq (\sqrt{th+h})|A_hx|$ for $x \in C$ and $t \ge 0$; $|T_{h}(t)x - \{(1-t)I + tT(h)\}^{[1/h]}x| \leq (\sqrt{h} + h)|A_{h}x|$ (2)for $x \in C$ and $t \in [0, 1]$; (3) $|T_{h}(t)x - (I - \lambda A_{h})^{-[t/\lambda]}x| \leq 2\sqrt{\lambda^{2} + t\lambda} |A_{h}x|$ for $x \in C$ and $t \ge 0$. In what follows we let $x \in C$, T > 0, $\delta \in (0, 1]$ and λ , $h < \delta^2$. Since $A_h J_{\lambda}$, $h < \delta^2$. $=\lambda^{-1}(J_{\lambda,h}-I)$, it follows from (1), (2), (3) and Lemma that $|T_h(t)J_{\sqrt{h},h}x - T([t/h]h)J_{\sqrt{h},h}x|$ (4) $\leq (\sqrt{t} + \sqrt{h}) |J_{\sqrt{h},h}x - x| \leq (\sqrt{t} + 1)\gamma(2\delta)$ for $t \ge 0$, $|T_{h}(t)J_{\sqrt{h},h}x - \{(1-t)I + tT(h)\}^{[1/h]}J_{\sqrt{h},h}x|$ (5) $\leq (1+\sqrt{h}) |J_{\sqrt{h}} x - x| \leq 2\gamma(2\delta)$ for $t \in [0, 1]$ and $|T_{h}(t)J_{\sqrt{\lambda},h}x - (I - \lambda A)^{-[t/\lambda]}J_{\sqrt{\lambda},h}x|$ (6) $\leq 2\sqrt{\lambda+t} |J_{\sqrt{\lambda},h}x - x| \leq 2\sqrt{1+t} \gamma(2\delta)$ for $t \ge 0$. Proof of (a). Since $|T(t)x - T_h(t)x|$ $\leq |T(t)x - T([t/h]h)x| + |T([t/h]h)J_{\sqrt{h}h}x - T([t/h]h)x|$ + $|T([t/h]h)J_{\sqrt{h},h}x - T_h(t)J_{\sqrt{h},h}x| + |T_h(t)J_{\sqrt{h},h}x - T_h(t)x|$ $\leq |T(t-[t/h]h)x-x| + 2|J_{\sqrt{h}h}x-x| + |T([t/h]h)J_{\sqrt{h}h}x-T_h(t)J_{\sqrt{h}h}x|$ $\leq \gamma(h) + 2\gamma(2\delta) + (\sqrt{t} + 1)\gamma(2\delta)$ $(7) \leq (\sqrt{t}+4)\gamma(2\delta),$ we get $\sup |T(t)x - T_h(t)x| \leq (\sqrt{T} + 4)\gamma(2\delta)$. For any $\varepsilon > 0$ taking $t \in [0,T]$ $\delta \in (0, 1]$ so that $\gamma(2\delta) \leq \varepsilon/(\sqrt{T}+4)$, we have $\sup_{t\in[0,T]}|T(t)x-T_h(t)x|\!<\!\varepsilon\qquad\text{for }h\!<\!\delta^2.$ **Proof of (b).** By (5) and (7) we obtain that $\sup |T(t)x - \{(1-t)I + tT(h)\}^{[1/h]}x|$ $t \in [0, 1]$ $\leq (1+4)\gamma(2\delta) + \sup_{t \in [0,1]} |T_h(t)x - \{(1-t)I + tT(h)\}^{[1/h]}x|$ $\leq 5\gamma(2\delta) + 2\gamma(2\delta) + 2|J_{\sqrt{h}h}x - x|$ $\leq 9\gamma(2\delta)$, which implies that (b) is true. Here we have used the fact that (1-t)I + tT(h) is a contraction. Proof of (c). It also follows from (6) and (7) that $\sup_{t\in[0,T]} |T(t)x - (I - \lambda A_h)^{-[t/\lambda]}x|$ $\leq (\sqrt{T} + 4)\gamma(2\delta) + \sup_{t \in [0,T]} |T(t)x - (I - \lambda A_h)^{-\lfloor t/\lambda \rfloor}x|$ $\leq (\sqrt{T}+4)\gamma(2\delta)+2\sqrt{1+T}\gamma(2\delta)+2|J_{\sqrt{1},b}x-x|$ $\leq 3(\sqrt{1+T}+2)\gamma(2\delta).$

Hence we complete the proof.

Acknowledgement. The author first proved (a) and (b). Mr. Y. Kobayashi pointed out that (c) can be also proved by using the

736

No. 9]

same argument as (a) and (b). The author wants to express his deep gratitude to Professor I. Miyadera for many valuable advices.

References

- M. G. Crandall and T. M. Liggett: Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 265-298 (1971).
- [2] Y. Kobayashi: On approximation nonlinear semi-groups (to appear).
- [3] I. Miyadera: Some remarks on semi-groups of nonlinear operators. Tôhoku Math. J., 23, 245-258 (1971).