160. The Generalized Form of Poincare's Inequality and its Application to Hypoellipticity

By Kazuo Taniguchi
University of Osaka Prefecture
(Comm. by Kôsaku Yosida, m. J. A., Nov. 12, 1974)

Introduction. In this paper we shall derive an inequality of the form

$$
\begin{equation*}
\|u\| \leqq C\left(\zeta^{-\tau}\|u\|_{\tau}+\zeta^{\imath}\|g u\|\right) \quad \text { for } u \in C_{0}^{\infty}\left(B_{\delta_{0}}\right), \zeta>0 \tag{0.1}
\end{equation*}
$$

as an extended form of Poincaré's inequality, where $B_{\delta_{0}}$ is the open ball in R_{x}^{n} with the center $x=0$ and the radius $\delta_{0}>0, \tau$ is a positive number, and $g(x)$ is a real valued C^{∞}-function which vanishes of finite order l at the origin. If g is a homogeneous function satisfying $|g(x)| \geqq C_{0}|x|^{2}$ $\left(C_{0}>0\right)$ we can easily derive (0.1) by deriving first an inequality $\|u\|$ $\leqq C\left(\left\|\left|D_{x}\right|^{\tau} u\right\|+\|g u\|\right)$ and using the homogeneity of g as in Grushin [2]. In the present paper using Hörmander's theorem in [4] we shall prove that the inequality (0.1) holds even in the case of non-homogeneous function $g(x)$.

As an application we shall prove the hypoellipticity for the operator of the form

$$
\begin{equation*}
L=a\left(X, D_{x}\right)+g(X) b\left(X, Y, D_{y}\right) \tag{0.2}
\end{equation*}
$$

when $a(x, \xi)$ satisfies the conditions similar to those in [3] and [7], $b(x, y, \eta)$ satisfies the conditions similar to those in the strongly elliptic case, and $g(x)$ is a non-negative function such that $\partial_{x}^{\alpha_{0}} g(0) \neq 0$ for some α_{0}. The idea of the proof is found in the proof of the hypoellipticity of the operator $L u=|x|^{2} \Delta_{x}^{2}\left(|x|^{2} u\right)-\Delta_{x} u+i|x|^{2} \Delta_{y}^{3} u$ by Beals [1]. We note that the operator of the form (0.2) is a generalization of the operators $A\left(x ; D_{x}\right)+g(x)^{2} B\left(x, y ; D_{y}\right)$ in Kato [5] and $\left(-\Delta_{x}\right)^{l}+|x|^{2 \nu}\left(-\Delta_{y}\right)^{l^{l}}$ in Grushin [2] and Taniguchi [8].

The author wishes to thank Prof. H. Kumano-go for suggesting these problems and his helpful advice.
§1. The generalized form of Poincare's inequality. In this paper we shall use the following notations:

$$
\begin{gathered}
\partial_{x_{j}}=\partial / \partial x_{j}, \quad j=1, \cdots, n, \\
\partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}} \quad \text { for multi-index } \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \\
\mathscr{B}\left(R_{x}^{n}\right)=\left\{u \in C^{\infty}\left(R_{x}^{n}\right) ; \sup _{x}\left|\partial_{x}^{\alpha} u(x)\right|<\infty \text { for any } \alpha\right\}, \\
\mathcal{S}\left(R_{x}^{n}\right)=\left\{u \in \mathscr{B}\left(R_{x}^{n}\right) ; x^{\alpha} \partial_{x}^{\beta} u \in \mathscr{B}\left(R_{x}^{n}\right) \text { for any } \alpha, \beta\right\} .
\end{gathered}
$$

Theorem 1. Let $g(x) \in C^{\infty}\left(\overline{B_{\delta_{0}}}\right)$ be a real valued function which satisfies for some α_{0}

$$
\begin{equation*}
\left|\partial_{x}^{\alpha_{0}} g(x)\right| \geqq c_{0}>0 \quad \text { in } B_{\delta_{0}} \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{x}^{\beta} g(0)=0 \quad \text { for }|\beta|<\left|\alpha_{0}\right|, \tag{1.1}
\end{equation*}
$$

where $B_{\delta_{0}}$ is an open ball in R_{x}^{n} with the center $x=0$ and the radius $\delta_{0}(>0)$. Then we have for $\tau>0$
(1.2) $\quad\|u\| \leqq C\left(\zeta^{-\tau}\|u\|_{\tau}+\zeta^{\left|\alpha_{0}\right|}\|g u\|\right) \quad$ for $u \in C_{0}^{\infty}\left(B_{\delta_{0}}\right), \zeta>0$.

Remark. In (1.2) setting $\zeta=c \delta^{-1}$ for small constant c we can easily prove Poincaré's inequality

$$
\|u\| \leqq C \delta^{\tau}\|u\|_{\tau} \quad \text { for } u \in C_{0}^{\infty}\left(B_{\delta}\right), 0<\delta<\delta_{0}
$$

since we have $|g(x)| \leqq C_{1}|x|^{|\alpha 0|}$ for a constant C_{1}.
Proof. As in [4] we use the notations $e^{t X},|v|_{X, s}$ for a vector field X in $\Omega=B_{\delta_{0}} \times R_{y}^{1}$ and $0<s \leqq 1$ as follows:
$e^{t X}$: one parameter group of transformations in Ω defined by X,

$$
|v|_{X, s}=\sup _{0<t \leqq 1} t^{-s}\left\|e^{t X} v-v\right\|_{L_{x, v}^{2},}, \quad \text { where } L_{x, y}^{2}=L^{2}\left(R_{x}^{n} \times R_{y}^{1}\right) .
$$

First we assume $0<\tau \leqq 1$ and prove the next inequality

$$
\begin{equation*}
\zeta^{\tau_{1}}\|u\| \leqq C\left(\|u\|_{\tau}+\zeta\|g u\|\right) \quad\left(\tau_{1}=\left(1+\left|\alpha_{0}\right| / \tau\right)^{-1}\right) \tag{1.2}
\end{equation*}
$$

which is equivalent to (1.2). Moreover we may assume $\zeta \geqq C_{0}$ for some constant $C_{0}>0$ in (1.2)', since (1.2)' is trivial for $0<\zeta \leqq C_{0}$. We put X_{0} $=g(x) \partial_{y}, X_{1}=\partial_{x_{1}}, \cdots, X_{n}=\partial_{x_{n}}, s_{0}=1, s_{1}=\cdots=s_{n}=\tau$. Then we have for $Y=\partial_{y}$

$$
\begin{aligned}
& Y=\left(\partial_{x}^{\alpha_{0}} g(x)\right)^{-1}\left(\operatorname{ad} X_{1}\right)^{\alpha_{01}}\left(\operatorname{ad} X_{2}\right)^{\alpha_{02}} \cdots\left(\operatorname{ad} X_{n}\right)^{\alpha_{0 n}} X_{0} \\
& \quad\left((\operatorname{ad} X) Y=X Y-Y X, \alpha_{0}=\left(\alpha_{01}, \cdots, \alpha_{0 n}\right)\right)
\end{aligned}
$$

and we have the next formula by Theorem 4.3 in [4]

$$
\begin{align*}
& |v|_{Y, r_{1}} \leqq C_{1}\left(\sum_{j=1}^{n}|v|_{X_{j, \tau}}+|v|_{X_{0}, 1}+\|v\|\right) \tag{1.3}\\
& \quad \text { for } v \in C_{0}^{\infty}\left(B_{\delta_{0}} \times\{y ;|y|<1\}\right) .
\end{align*}
$$

We fix a function $\chi(y) \in C_{0}^{\infty}((-1,1))$ such that $\chi \geqq 0$ and $\int \chi(y)^{2} d y=1$, and put $v_{\zeta}(x, y)=\chi(y) e^{i \zeta y} u(x)$ for $u \in C_{0}^{\infty}\left(B_{\delta_{0}}\right)$. Then we have from (1.3)

$$
\begin{equation*}
\left|v_{\zeta}\right|_{Y, r_{1}} \leqq C_{1}\left(\sum_{j=1}^{n}\left|v_{\zeta}\right|_{X_{j, \tau}}+\left|v_{\xi}\right|_{X_{0}, 1}+\left\|v_{\zeta}\right\|\right) . \tag{1.4}
\end{equation*}
$$

We calculate each term. To begin with we have

$$
\begin{equation*}
\left\|v_{\zeta}\right\|^{2}=\iint\left|\chi(y) e^{i \zeta y} u(x)\right|^{2} d x d y=\|u\|_{j}^{2} \leqq C_{2}\|u\|_{\tau}^{2} . \tag{1.5}
\end{equation*}
$$

Since $\left(e^{t X j} v\right)(x, y)=v\left(x+t e_{j}, y\right)\left(e_{j}=(0, \cdots, 0, \stackrel{j}{1}, 0, \cdots, 0)\right)$ for $j \geqq 1$, we have

$$
\begin{align*}
\left|v_{\zeta}\right|_{X_{j, \tau}} & =\sup _{0<t \leq 1}\left\{t^{-2 r} \iint|\chi(y)|^{2}\left|u\left(x+t e_{j}\right)-u(x)\right|^{2} d x d y\right\}^{1 / 2} \\
& =\sup _{0<t \leq 1}\left\{t^{-2 \tau} \int\left|u\left(x+t e_{j}\right)-u(x)\right|^{2} d x\right\}^{1 / 2} \leqq C_{3}\|u\|_{r} . \tag{1.6}
\end{align*}
$$

Next we have from $\left(e^{t X_{0}} v_{\zeta}\right)(x, y)=v_{\zeta}(x, y+t g(x))$

$$
\begin{aligned}
& t^{-2}\left\|e^{t X_{0}} v_{\xi}-v_{\zeta}\right\|^{2} \\
& \quad=t^{-2} \iint\left|\chi(y+t g(x)) e^{i \zeta(y+t g(x))} u(x)-\chi(y) e^{i \zeta y} u(x)\right|^{2} d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int|g(x) u(x)|^{2} d x \int \mid \int_{0}^{1}\left\{\chi^{\prime}(y+\theta \operatorname{tg}(x)) e^{i \zeta(y+\theta t g(x))}\right. \\
& \left.\quad+\chi(y+\theta \operatorname{tg}(x)) i \zeta e^{i \zeta(y+\theta t g(x))}\right\}\left.d \theta\right|^{2} d y \\
& \leqq C_{4}^{2} \zeta^{2}\|g u\|^{2} \quad\left(\zeta \geqq C_{0}\right) .
\end{aligned}
$$

Then we get
(1.7)

$$
\left|v_{\zeta}\right|_{x_{0,1}} \leqq C_{4} \zeta\|g u\| .
$$

Similarly we have

$$
\begin{align*}
\left|v_{\zeta}\right|_{Y, \tau_{1}}^{2} & =\sup _{0<t \leq 1} t^{-2 \tau_{1}}\left\|e^{t Y} v_{\zeta}-v_{\zeta}\right\|^{2} \\
= & \sup _{0<t \leq 1} t^{-2 \tau_{1}} \iint\left|\chi(y+t) e^{i \zeta(y+t)} u(x)-\chi(y) e^{i \zeta y} u(x)\right|^{2} d x d y \\
\geqq & \geqq u \|^{2} \sup _{0<t \leq 1} t^{-2 \tau_{1}} \int\left\{\frac{1}{2}|\chi(y)|^{2}\left|e^{i \zeta(y+t)}-e^{i \zeta y}\right|^{2}\right. \tag{1.8}\\
& \left.\quad-|\chi(y+t)-\chi(y)|^{2}\left|e^{i \zeta(y+t)}\right|^{2}\right\} d y \\
\geqq & \geqq C_{5} 5^{2 \tau_{1}}\|u\|^{2}-C_{6}\|u\|^{2} \quad\left(\zeta \geqq C_{0}\right) .
\end{align*}
$$

Therefore we have (1.2)' from (1.4)-(1.8). For $\tau \geqq 1$ we can prove (1.2) by interpolation and (1.2) for $0<\tau \leqq 1$.
§ 2. Hypoellipticity at the origin. In this section we shall study a scalar differential operator in $R_{x}^{n} \times R_{y}^{k}$ of the form

$$
\begin{equation*}
L\left(X, Y, D_{x}, D_{y}\right)=a\left(X, D_{x}\right)+g(X) b\left(X, Y, D_{y}\right) \tag{2.1}
\end{equation*}
$$

We say that L is hypoelliptic at the origin if there exists a neighborhood Ω of the origin such that $L u \in C^{\infty}\left(\Omega^{\prime}\right)$ implies $u \in C^{\infty}\left(\Omega^{\prime}\right)$ for $u \in \mathscr{D}^{\prime}(\Omega)$ and any open set Ω^{\prime} in Ω.

Before the formulation we introduce some notations.
Notations. Let $\lambda(\xi), \mu(\eta)$ be C^{∞}-functions in $R_{\xi}^{n}, R_{\eta}^{k}$, respectively, such that for $0<\sigma \leqq 1$
(2.2) $\quad(1+|\xi|)^{0} \leqq \lambda(\xi) \leqq C(1+|\xi|), \quad(1+|\eta|)^{0} \leqq \mu(\eta) \leqq C^{\prime}(1+|\eta|)$,
(2.3) $\quad\left|\partial_{\xi}^{\alpha} \lambda(\xi)\right| \leqq C_{\alpha} \lambda(\xi)^{1-|\alpha|}, \quad\left|\partial_{\eta}^{\alpha^{\prime}} \mu(\eta)\right| \leqq C_{\alpha^{\prime}} \mu(\eta)^{1-\left|\alpha^{\prime}\right|}$.
$\left.1^{\circ}\right) \quad S_{\lambda, 1, \delta}^{m}=\left\{p(x, \xi) \in C^{\infty}\left(R_{x, \xi}^{2 n}\right) ;\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(x, \xi)\right| \leqq C_{\alpha \beta} \lambda(\xi)^{m-|\alpha|+\delta \mid \beta}\right\}$

$$
(-\infty<m<\infty, 0 \leqq \delta<1)
$$

$S_{\lambda}^{-\infty}=\bigcap_{m} S_{\lambda, 1, \delta}^{m} \quad$ (cf. [3], [6] and [8]).
$\left.2^{\circ}\right) \quad \mathcal{B}_{x}\left(S_{\mu}^{m^{\prime}}\right)=\left\{q(x, y, \eta) \in C^{\infty}\left(R_{x}^{n} \times R_{y, \eta}^{2 k}\right) ;\left|\partial_{x}^{\gamma} \partial_{\eta}^{\alpha^{\prime}} \partial_{y}^{\beta^{\prime}} q(x, y, \eta)\right|\right.$

$$
\left.\leqq C_{\alpha^{\prime} \beta^{\prime} \gamma} \mu(\eta)^{m^{\prime}-\left|\alpha^{\prime}\right|}\right\} \quad\left(-\infty<m^{\prime}<\infty\right)
$$

3°) For $p(x, \xi) \in S_{\lambda, 1, \delta}^{m}$ and $q(x, y, \eta) \in \mathscr{B}_{x}\left(S_{\mu}^{m^{\prime}}\right)$ we define pseudo-differential operators $P=p\left(X, D_{x}\right), Q=q\left(X, Y, D_{y}\right)$ with symbols $\sigma(P)(x, \xi)$ $=p(x, \xi), \sigma(Q)(x, y, \eta)=q(x, y, \eta)$ by

$$
\begin{aligned}
& P v=(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi)\left(\int e^{-i x \cdot \xi} v(x) d x\right) d \xi \\
& P u=(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi)\left(\int e^{-i x \cdot \xi} u(x, y) d x\right) d \xi \\
& Q u=(2 \pi)^{-k} \int e^{i y \cdot \eta} q(x, y, \eta)\left(\int e^{-i y \cdot \eta} u(x, y) d y\right) d \eta \\
& \quad \text { for } v \in \mathcal{S}\left(R_{x}^{n}\right) \text { and } u \in \mathcal{S}\left(R_{x, y}^{n+k}\right) .
\end{aligned}
$$

$\left.4^{\circ}\right) \quad$ For $P=p\left(X, D_{x}\right) \in S_{2,1, \delta}^{m}$ we denote the formal adjoint of P by $P^{(*)}$ $=p^{(*)}\left(X, D_{x}\right)$, which is defined by

$$
(P u, v)=\left(u, P^{(*)} v\right) \quad \text { for } u, v \in \mathcal{S}\left(R_{x}^{n}\right) .
$$

Conditions. 1) $a(x, \xi)$ belongs to $S_{\lambda, 1,0}^{m}(m>0)$ and satisfies for large $|\xi|$

$$
\begin{gather*}
\operatorname{Re} a(x, \xi) \geqq C_{0} \lambda(\xi)^{\tau m} \quad\left(0<\tau \leqq 1, C_{0}>0\right), \tag{2.4}\\
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \alpha(x, \xi) / \operatorname{Re} \alpha(x, \xi)\right| \leqq C_{\alpha \beta} \lambda(\xi)^{-|\alpha|+\delta|\beta|} \quad(0 \leqq \delta<1) \tag{2.5}
\end{gather*}
$$

(cf. [3], p. 164 and [7], p. 154).
2) $b(x, y, \eta)$ belongs to $\mathcal{B}_{x}\left(S_{\mu}^{m^{\prime}}\right)\left(m^{\prime}>0\right)$ and there exists $b_{0}(x, y, \eta)$ $\in \mathscr{B}_{x}\left(S_{\mu}^{m{ }^{\prime}}\right)$ such that

$$
b(x, y, \eta)-b_{0}(x, y, \eta) \in \mathscr{B}_{x}\left(S_{\mu}^{m^{\prime}-1}\right)
$$

and for large $|\eta|$

$$
\begin{equation*}
\left|b_{0}(x, y, \eta)\right| \geqq C_{0}^{\prime} \mu(\eta)^{m^{\prime}} \quad\left(C_{0}^{\prime}>0\right) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re} b_{0}(x, y, \eta) \geqq 0 \tag{2.7}
\end{equation*}
$$

3) $g(x)$ belongs to $\mathscr{B}\left(R_{x}^{n}\right), g(x) \geqq 0$ and for some α_{0}

$$
\begin{equation*}
\partial_{x}^{\alpha_{0}} g(0) \neq 0 . \tag{2.8}
\end{equation*}
$$

Theorem 2. Under the conditions above the operator (2.1) is hypoelliptic at the origin.

Lemma. We put $p(x, \xi)=(1 / 2)\left(a(x, \xi)+a^{(*)}(x, \xi)\right)$. Then $p(x, \xi)$ has a fractional power $\left\{p_{t}\right\}_{t \in R}$ such that

$$
\begin{gather*}
\left\{\begin{array}{l}
p_{t} \in S_{\lambda, 1, \delta}^{m t}, \quad\left|p_{t}(x, \xi)\right| \geqq C \lambda(\xi)^{z m t} \text { for large }|\xi| \quad(t \geqq 0) \\
p_{t} \in S_{\lambda, 1, \delta, \delta}^{m},\left|p_{t}(x, \xi)\right| \geqq C^{\prime} \lambda(\xi)^{m t} \text { for large }|\xi| \quad(t<0) . \\
P_{0}=I(\text { identity operator }), \quad P_{1}=P \text { (original operator). } \\
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p_{t}(x, \xi) / p_{t}(x, \xi)\right| \leqq C_{\alpha \beta}^{\alpha} \lambda(\xi)^{-|\alpha|+\delta|\beta|} \quad \text { for large }|\xi| .
\end{array}\right. \tag{2.9}\\
\quad \sigma\left(P_{t_{1}} P_{t_{2}}\right)-p_{t_{1}+t_{2}} \in S_{-}^{-\infty}, \quad p_{t}^{(*)}-p_{t} \in S_{\lambda}^{-\infty} . \tag{2.10}
\end{gather*}
$$

Proof is carried out by the similar way to that in [7].
Here we introduce three Sobolev spaces.

$$
H_{t, s}=\left\{u \in \mathcal{S}^{\prime}\left(R_{x, y}^{n+k}\right) ; \lambda\left(D_{x}\right)^{t} \mu\left(D_{y}\right)^{s} u \in L^{2}\right\}
$$

with the norm $\|u\|_{t, s}=\left\|\lambda\left(D_{x}\right)^{t} \mu\left(D_{y}\right)^{s} u\right\|_{L_{x, v}^{2}}$.

$$
\mathcal{H}_{t, s}=\left\{u \in \bigcup_{t^{\prime}} H_{t^{\prime}, s} ; P_{t} \mu\left(D_{y}\right)^{s} u \in L^{2}\right\}
$$

with the norm

$$
\begin{equation*}
\|u\|_{t, s, P}=\left\{\left\|P_{t} u\right\|_{0, s}^{2}+\left\|\Phi\left(D_{x}\right) u\right\|_{0, s}^{2}\right\}^{1 / 2} \tag{2.13}
\end{equation*}
$$

where $\Phi(\xi)$ is a fixed function of $\mathcal{S}\left(R_{\xi}^{n}\right)$ such that $\Phi(\xi)>0$ in R_{ξ}^{n} (cf. § 4 of [7]).

$$
W_{s}=\left\{u \in \mathcal{H}_{t, s} ; g u \in \mathcal{H}_{-\frac{1}{2}, s+m^{\prime}}\right\}
$$

with the norm $\left\|\|u\|_{s}=\left\{\|u\|_{2, s, P}^{2}+\|g u\|_{-\frac{1}{2}, s+m^{\prime}, P}^{2}\right\}^{1 / 2}\right.$ (cf. [1]).
Let ω be a neighborhood of the origin in R_{x}^{n} such that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha_{0}} g(x)\right| \geqq c_{0}>0 \quad \text { on } \bar{\omega}, \tag{2.14}
\end{equation*}
$$

which is guaranteed by (2.8). Then we have
Proposition 1. For $s \in R^{1}$ and $0 \leqq t \leqq 1$ there exists a constant C such that

$$
\begin{equation*}
\|u\|_{t / 2, s+\rho_{0}(1-t), P} \leqq C\|u\|_{s} \quad \text { for } u \in C_{0}^{\infty}(\Omega) \tag{2.15}
\end{equation*}
$$

where $\rho_{0}=\sigma \tau m m^{\prime} / 2\left(\sigma \tau m+2\left|\alpha_{0}\right|\right)$ and $\Omega=\omega \times R_{v}^{k}$.
Proof. From Theorem 1 and (2.14) we have for $\tau_{1}=(\sigma \tau m$ $\left.+2\left|\alpha_{0}\right|\right) / \sigma \tau m$
(2.16) $\quad \zeta\|v\|^{2} \leqq C_{1}\left(\|v\|_{2_{1}^{2} \sigma m}^{2}+\zeta^{\tau_{1}}\|g v\|^{2}\right) \quad$ for $v \in C_{0}^{\infty}(\omega), \zeta>0$.

Since we can write $I=P_{\frac{2}{2}}^{(*)} P_{-\frac{1}{2}}+R\left(R \in S_{2}^{-\infty}\right)$ from (2.12), we have

$$
\begin{align*}
& \|g v\|^{2} \leqq C_{2}\|\sqrt{g} v\|^{2}=C_{2}(g v, v) \\
& =C_{2}\left\{\left(P_{-\frac{1}{2}} g v, P_{\frac{z}{2}} v\right)+(R g v, v)\right\} \\
& \quad \leqq C_{3}\left\{\zeta^{\tau_{1}}\left\|P_{-\frac{1}{2}} g v\right\|^{2}+\zeta^{-\tau_{1}}\left\|P_{\frac{1}{2}} v\right\|^{2}+\zeta^{\tau_{1}}\left\|\lambda\left(D_{x}\right)^{-\frac{1}{2} m} g v\right\|^{2}\right. \tag{2.17}\\
& \left.\quad+\zeta^{-\tau_{1}}\left\|\lambda\left(D_{x}\right)^{\frac{1}{2} m} v\right\|^{2}\right\} .
\end{align*}
$$

Noting (2.2) we have from (2.16) and (2.17)
(2.18) $\quad \zeta\|v\|^{2} \leqq C_{4}\left\{\left\|P_{\frac{1}{z}} v\right\|^{2}+\left\|\lambda\left(D_{x}\right)^{\frac{1}{2} r m} v\right\|^{2}+\zeta^{2 \tau_{1}}\left(\left\|P_{-\frac{1}{2}} g v\right\|^{2}+\left\|\lambda\left(D_{x}\right)^{-\frac{1}{2} m} g v\right\|^{2}\right)\right\}$.

We denote for Φ used in (2.13)

$$
\|v\|_{t, P}=\left\{\left\|P_{t} v\right\|^{2}+\left\|\Phi\left(D_{x}\right) v\right\|^{2}\right\}^{1 / 2}
$$

Then we have as Theorem 4.1 in [7]

$$
\left\|\lambda\left(D_{x}\right)^{\frac{1}{2} \tau m} v\right\| \leqq C_{5}\|v\|_{\underline{2}, P}, \quad\left\|\lambda\left(D_{x}\right)^{-\frac{1}{z} m} v\right\| \leqq C_{6}\|v\|_{-\frac{1}{2}, P}
$$

and we get from (2.18)
(2.19)

$$
\zeta\|v\|^{2} \leqq C_{7}\left(\|v\|_{2, P}^{2}+\zeta^{2 r_{1}}\|g v\|_{-\frac{1}{2}, P}^{2}\right) .
$$

Using this and Friedrichs parts as in [6] with respect to

$$
\zeta^{(1-t)}(\operatorname{Re} a(x, \xi)+\psi(\xi))^{t} \leqq C((\operatorname{Re} a(x, \xi)+\psi(\xi))+\zeta) \quad(0 \leqq t \leqq 1)
$$

for some $\psi(\xi) \in C_{0}^{\infty}\left(R_{\xi}^{n}\right)$ such that $\operatorname{Re} a(x, \xi)+\psi(\xi) \geqq 0$ for all ξ, we can get for $0 \leqq t \leqq 1$
(2.20) $\quad \zeta^{(1-t)}\|v\|_{t / 2, P}^{2} \leqq C_{8}\left(\|v\|_{2}^{2}, P+\zeta^{2 \tau_{1}}\|g v\|_{-\frac{1}{2}, P}^{2}\right) \quad$ for $v \in C_{0}^{\infty}(\omega), \xi>0$.

Writing $\tilde{u}(x, \eta)=\int e^{-i y \cdot \eta} u(x, y) d y$, we have

$$
\|u\|_{t, s, P}^{2}=(2 \pi)^{-k} \int \mu(\eta)^{2 s}\|\tilde{u}(\cdot, \eta)\|_{t, P}^{2} d \eta
$$

By putting $\zeta=\mu(\eta)^{2 \rho_{0}}$ in (2.20) we have (2.15) as follows:

$$
\begin{aligned}
\|u\|_{t / 2, s+\rho_{0}(1-t), P}^{2} & =(2 \pi)^{-k} \int \mu(\eta)^{2 s \zeta^{(1-t)}}\|\tilde{u}\|_{t / 2, P}^{2} d \eta \\
& \leqq(2 \pi)^{-k} C_{8} \int \mu(\eta)^{2 s}\left\{\|\tilde{u}\|_{\tilde{2}, P}^{2}+\zeta^{2 \tau_{1}}\|g \tilde{u}\|_{-\frac{1}{2}, P}^{2}\right\} d \eta \\
& =C_{8} \mid\|u\|_{8}^{2} .
\end{aligned}
$$

Here we use the fact that $\zeta^{2 r_{1}}=\mu(\eta)^{2 m^{\prime}}$.
Proposition 2. For any integer $l(\geqq 0)$, and real numbers s, s_{1}, t_{1}, there exists a constant C such that

$$
\begin{align*}
& \|u\|_{l+\frac{1}{2}, s-l m^{\prime}, P}+\|g u\|_{l-\frac{1}{2}, s+m^{\prime}-l m^{\prime}, P} \tag{2.21}\\
& \equiv C C\left(\|L u\|_{l-\frac{1}{2}, s, P}+\|u\|_{t_{1}, s_{1}}\right) \quad \text { for } u \in C_{0}^{\infty}(\Omega) .
\end{align*}
$$

Proof is omitted.
Using Propositions 1 and 2 we can prove that for any open set Ω^{\prime} in Ω, integer $l(\geqq 0)$, real number s, and $u \in \mathscr{D}^{\prime}(\Omega)$, Lu $\mathcal{S}_{\substack{\text { loo } \\ l-t, s}}^{102}\left(\Omega^{\prime}\right)$ implies $u \in \mathscr{F}_{l+\ddagger, s-l m^{\prime}}^{100}\left(\Omega^{\prime}\right)$. Then Theorem 2 is proved. The detailed proof will be published elsewhere.

References

[1] R. Beals: Spatially inhomogeneous pseudodifferential operators. III (to appear).
[2] V. V. Grushin: On a class of hypoelliptic operators. Math. USSR Sb., 12, 458-476 (1970).
[3] L. Hörmander: Pseudo-differential operators and hypoelliptic equations. Proc. Symposium on Singular Integrals. Amer. Math. Soc., 10, 138-183 (1967).
[4] --: Hypoelliptic second order differential equations. Acta. Math., 119, 147-171 (1967).
[5] Y. Kato: On a class of hypoelliptic differential operators. Proc. Japan Acad., 46, 33-37 (1970).
[6] H. Kumano-go: Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo, 17, 31-50 (1970).
[7] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudodifferential operators with applications. Osaka J. Math., 10, 147-174 (1973).
[8] K. Taniguchi: On the hypoellipticity and the global analytic-hypoellipticity of pseudo-differential operators. Osaka J. Math., 11, 221-238 (1974).

