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(Comm. by KSsaku YOSIDA, M. J. A., NOV. 12, 1974)

Introduction. In this paper we shall derive an inequality of the
form
(0.1) Ilull<=C(-llull/llgull) for ue C(Bo), >0
as an extended form of Poincar’s inequality, where B is the open ball
in R with the center x-O and the radius 00, v is a positive number,
and g(x) is a real valued C-function which vanishes of finite order
at the origin. If g is a homogeneous unction satisfying ]g(x)l Co]x]
(C00) we can easily derive (0.1) by deriving first an inequality l[ull
<=C(]lDlull+llgu]l) and using the homogeneity of g as in Grushin [2].
In the present paper using HSrmander’s theorem in [4] we shall prove
that the inequality (0.1) holds even in the case of non-homogeneous
function g(x).

As an application we shall prove the hypoellipticity for the operator
of the form
(0.2) L=a(X, D)+ g(X)b(X, Y, D,),
when a(x, ) satisfies the conditions similar to those in [3] and [7],
b(x, y, ) satisfies the conditions similar to those in the strongly elliptic
case, and g(x) is a non-negative unction such that 32g(0)4:0 or some
a0. The idea of the proof is found in the proof of the hypoellipticity
o the operator Lu=]x] zl([x] u)-zlu+ilxl zlu by Beals [1]. We note
that the operator of the orm (0.2) is a generalization o the operators
A(x D) + g(x)B(x, y; D.) in Kato [5] and (-zl) + ]x](-zl)v in
Grushin [2] and Taniguchi [8].

The author wishes to thank Prof. H. Kumano-go or suggesting
these problems and his helpful advice.

1. The generalized form of Poincare’s inequality. In this
paper we shall use the following notations"

Oxj=/xj, y=l, ...,n,
o/,,= o.%. .85 for multi-index a=(a, ,On)
.(R)={u e C(R) sup Iu(x)lc for any a},

3(R) {u e _(R) x3u e (R) for any a, }.
Theorem 1. Let g(x) e C(Bo) be a real valued function which

satisfies for some o
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(1.1) I3g(x)l_ c0>0 in Bo,
(1.1)’ g(O)=O for Il<l01,
where B is an open ball in R with the center x=0 and the radius
8o(> 0). Then we have for r> O
(1.2) u <C( ]u [ + .o gu ]) for u e C(Bo), > O.

Remark. In (1.2) setting 5=c3-* for small constant c we can
easily prove Poincar6’s inequality

u C u II for u e C(B), 0< <0,
since we have [g(x)[gC [xl *"* for a constant C.

Proof. As in [4] we use the notations etx, [vlx, for a vector field
X in 9:B R and 0< sg 1 as follows"

etx" one parameter group of transformations in 9 defined by X,
Iv Ix,- sup t- [etXv- v ., where L,--L(R R).

First we assume 0<r1 and prove the next inequality
(1.2)’
which is equivalent to (1.2). Moreover we may assume C0 for some
constant C0>0 in (1.2)’, since (1.2)’ is trivial for 0<[gC0. We put Xo
=g(x)3v, X-3,, ...,X=:3=, s0:l, s =s-r. Then we have for

Y-(3yg(x))-(ad X)"’(ad X)"o. (ad X=)"Xo
((ad X)Y XY-- YX, ao (ao, ..., ao=))

and we have the next formula by Theorem 4.3 in [4]

(1.3)
for v e C(Bo{y; ]y[<l}).

We fix a function Z(Y) e C((--1, 1)) such that Z0 and f Z(y)dy= 1, and

put v(x, y)-z(y)eu(x) for u e C(Bo). Then we have from (1.3)

We calculate each term. To begin with we have

(1.5) v --[[ ]Z(y)e’:u(x)]dxdy--]u]]Cu.

Since (etZv)(x, y)=v(x+ te, y) (e=(O, .., O, 1, O, ..., 0)) or ]1, we
have

Iv: [x,:-- sup t- ]Z(y)]lu(x+te)--u(x)]dxdy
0<tl(1.6)

=su
0<N1

Next we have from (ex"v)(, )=(z, + tg(z))
t
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+ Z(Y + Otg(x))iSe:(+t())}dOI dy

-<_c gu (_>_
Then we get
(1.7)
Similarly we have

etYv
o<:t<

sup
0tl JJ

(1.8)

--Z(Y

c::, u - c, u ( C0),.
Therefore we have (1.2)’ rom (1.4)-(1.8). For rl we can prove (1.2)
by interpolation and (1.2) or 0 r 1.

2. Hypoellipticity at the origin. In this sectioa we shall study
a scalar differential operator in R R of the orm
(2.1) L(X, Y, D, Dv)=a(X, D) + g(X)b(X, Y, Dv).
We say that L is hypoelliptic at the origin i there exists a neighbor-
hood 9 o the origin such that Lu e C(9’) implies u e C(9’) or
u e ’(9) and any open set

Before the ormulation we introduce some notations.
Notations. Let 2(), Z() be C-unctions in R, R, respectively,

such that or 0 a 1
(2.2) (1+ ) () C(1 + ),
(2.3) 2()gCfl()
1) S,={p(x,

$7 S1, (cf. [3], [6] and [8]).
2 ) (S. ) {q(x, y, , q(x, y, )

g c.,,z(v)’- -’ } (- <m’< ).
3) For p(x, ) e S, and q(x, y, ) e (S’) we define pseudo-differ-

ential operators P=p(X,D), Q=q(X, Y,D) with symbols a(P)(x,)
=p(x, ), a(Q)(x, y, )= q(x, y, ) by

Pv-(2)- ; e’(x, )(; e-’%(x)dx)d,

NCRn+or v
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4 For P--p(X, D)e S,, we denote the formal adjoint of P by
=p(*)(X, D), which is defined by

(Pu, v)-(u, P*)v) or u, v e 3(R).
Conditions. 1) a(x,) belongs to S,,0 (m0) and satisfies or

large
(2.4)
(2.5)

2)
e _(S, ) such that

Re a(x, )__>C02() (0<r=<l, C00),
I33{a(x, )/Rea(x, ) I_<_ C()-’’+’’ (0=<< 1)

(cf. [3], p. 164 and [7], p. 154).
b(x, y, ) belongs to _(S, (m’0) and there exists bo(x, y, )

and for large
(2.6)
(2.7)

b(x, y, )--bo(x, y, V) e (S,

bo(x, y, ])[>= C’oZ(V)"
Re bo(x, y, 7]) = O.

(c>0)

3) g(x) belongs to .q3(R), g(x)>=0 and for some c0
(2.8) 3g(0) =/= 0.

Theorem 2. Under the conditions above the operator (2.1) is
hypoelliptic at the origin.

Lemma. We put p(x,)=(1/2)(a(x,)+a(*)(x,)). Then p(x,
has a fractional power {Pt}te such that

[Pt e S,, pt(x,)]C()t for large (tO)
(2.9) .rmtPt e ,,, ]pt(x, )]>C’2() for large
(2.10) Po=I (identity operator), P=P (original operator).
(2.11) [33pt(x, )/pt(x, )[C()-’+ for large
(2.12) 6(Pt,Pt)--Pt+t e S;, P*)--Pt e S;.

Proo is carried out by the similar way to that in [7].
Here we introduce three Sobolev spaces.

Ht,--{u e ,, 2(D)tp(D)u e L}
with the norm u [[t,-- 2(D)tz(Dv)u

t,s--{u e t, Ht,,s Ptz(D)u e L}
with the norm
(2.13) u 1,, {11 Ptul, + (D)ul 0,
where () is a fixed function of (R) such that ()> 0 in R (cf. 4
of [7]).

w,={u e, gu e _,+
}1/ (cf. []).with the norm [[[u[][,--{ [u [,,, + ][gu[[_,+,,

Let w be a neighborhood of the origin in R such that
(2.14) ]g(x)]c0>0 on ,
which is guaranteed by (2.8). Then we have

Proposition 1. For s e R and 0gtgl there exists a constant C
such that
(2.15) Ilull/,+o(_),c Illulll /or u
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where po=armm’/2(arm+ 2 [a0[) and 9=o R.
Proof. From Theorem 1 and (2.14) we have for

+ 2 [o [) /arm
(2.16) 5[[v]C([v[[]+5’[]gv] ) for veC(w),>O.
Since we can write I=P*)P_+R (R e S;) rom (2.12), we have

gv gC Vv -C(gv, v)

(2.17) C((P_igv, Piv) + (Rgv,

Noting (2.2) we have from (2.16) and (2.17)
(2.18) [v]gC,([]Piv]+][(D)v[+;(]
We denote for used in (2.13)

iv ], Pv + (D)v ]l}.
Then we have as Theorem 4.1 in [7]

and we get from (2.18)
(2.19) 5 Iv [[2 C( Iv + ::’ gvp
Using this and Friedrichs parts as in [6] with respect to

(1-t)(Rea(x,)+())tC((Rea(x,)+())+O (0tl)
for some ()e C:(R) such that Re a(x, )+()0 for all , we can
get or 0g tg 1
(2.20) (-t) ilvll/=,C(ltvll,+.llgvll%,) or v e CW(), >0.
Writing (x, V)-.[" e-"u(x, y)dy, we have

By putting 5=Z(V)m in (2.20) we have (2.15) as follows"

,}dv

=cu.
Here we use the act that=Z(V)’.

Proposition 2. For any integer l(O), and real numbers s, s, t,
there exists a constant C such that

(2.21)
u tl,.-’,+ anI[-,,-,,

C(il Lu I[,-,., + u [[,,..) for u e
Proof is omitted.
Using Propositions 1 and 2 we can prove that for any open set

o (, impliesin 9, integer/(>0), real number s, and u e ’(9), Lu e _,,,
dfloeu e +,,_,(9 ). Then Theorem 2 is proved. The detailed proo will

be published elsewhere.
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