158. Fundamental Solution of Partial Differential Operators of Schrödinger's Type. II

The Space-Time Approach

By Daisuke FuJIwara
Department of Mathematics, University of Tokyo

(Comm. by Kôsaku Yosida, m. J. A., Nov. 12, 1974)
§ 1. Introduction. In the previous note [2] we constructed the fundamental solution of $i \frac{\partial}{\partial t}+1 / 2 \Delta$, where Δ is the Laplace operator associated with a Riemannian metric $d s^{2}=\sum_{i j} g_{i j}(x) d x_{i} d x_{j}$ in R^{n} satisfying some conditions. There we made use of discussions of classical orbits in the phase space. In this note discussing in the spacetime, we shall construct the fundamental solution of $\nu i \frac{\partial}{\partial t}+\Delta, \nu>0$. This will be closer to the original Feynman's idea [1]. Assumptions will be found in § 2 and results will be found in § 4 . In § 3 we shall construct parametrix. The outline of proof will be given in §5. The main Lemma proof of which is too long to be presented in this short note will be proved in the subsequent paper [3].
§2. Assumptions. Let $|x-y|$ be the Euclidean distance from y to x and $r(x, y)$ be the geodesic distance from y to x. Our assumptions are the following ones:
(A-I) for any two points x, y in R^{n}, there exists unique geodesic joining x to y.
(A-II) the metric $d s^{2}$ coincides with the Euclidean metric outside compact set K.
(A-III) there exists a constant $C>0$ such that
(1)

$$
\left|\operatorname{grad}_{x}\left(r^{2}(x, y)-r^{2}(x, z)\right)\right| \geqq C|y-z| .
$$

(A-IV) for any multi-indices α with $|\alpha| \geqq 2$, there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(r^{2}(x, y)-r^{2}(x, z)\right)\right| \leqq C|y-z| . \tag{2}
\end{equation*}
$$

§ 3. Parametrix. We make use of the parametrix of the form

$$
\begin{equation*}
E_{N}(t, x, y)=(\nu / 4 \pi t i)^{1 / 2 n} \exp \left(i \nu r^{2}(x, y) / 4 t\right) e(t, x, y), \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
e(t, x, y)=\sum_{j=0}^{N}(i t / \nu)^{j} e_{j}(x, y) \tag{4}
\end{equation*}
$$

If we use geodesic polar coordinates with center at y, the function
$e_{j}(x, y)$ is determined in the following manner ;

$$
\begin{gather*}
r \frac{d}{d r} e_{j+1}+\left(\frac{1}{2} r \frac{d}{d r} \log \sqrt{g+}+1+1\right) e_{j+1}=\Delta e_{j} \tag{5}\\
e_{-1}=0, \quad e_{0}(y, y)=1
\end{gather*}
$$

The solution of these equations are

$$
\begin{equation*}
e_{0}(x, y)=\left(g(x) /(g(y))^{1 / 4}\right. \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
e_{j}(x, y)=e_{0}(x, y) r(x, y)^{-j} \int_{0}^{r(x, y)} \frac{r(z, y)^{j-1}}{e_{0}(z, y)} \Delta_{z} e_{j-1}(z, y) d r(z, y) \tag{7}
\end{equation*}
$$

Integral is taken along the geodesic joining x to y. From this construction we have

$$
\begin{align*}
& \left(\nu i \frac{\partial}{\partial t}+\Delta\right) E_{N}(t, x, y) \tag{8}\\
& \quad=-(\nu / 4 \pi i t)^{1 / 2 n}(i t / \nu)^{N} \exp \left(i \nu r^{2}(x, y) / 4 t\right) \Delta e_{N}(x, y)
\end{align*}
$$

Since $e_{0}(x, y)=g(y)^{-1 / 4}$ if $x \notin K$ and $=g(x)^{1 / 4}$ if $y \notin K$, we have, for any multi-indices α, β,

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial y}\right)^{\beta} e_{j}(x, y)\right| \leqq C \tag{9}
\end{equation*}
$$

with $j=0$. Making use of (7) we see easily that (9) holds for any $j=0$, $1, \cdots, N$.
§ 4. Results. Let us define an integral transformation $E_{N}(t)$ by

$$
\begin{equation*}
E_{N}(t) f(x)=\int_{R^{n}} E_{N}(t, x, y) f(y) \sqrt{g(y)} d y \tag{10}
\end{equation*}
$$

Then our results are the following theorems.
Theorem I. $E_{N}(t)$ is a bounded linear transformation in $L^{2}\left(R^{n}, \sqrt{g} d x\right)$.

Theorem II (cf. Feyman [1]).

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|E_{N}(t / k) E_{N}(t / k) \cdots E_{N}(t / k)-\exp \left(i \nu^{-1} t \Delta\right)\right\|=0 \tag{11}
\end{equation*}
$$

where $\left\|\|\right.$ is the operator norm in $L^{2}\left(R^{n}, \sqrt{g} d x\right)$ and $\exp \left(\nu^{-1} t \Delta\right)$ is the one parameter group of unitary operators whose generator is $i \nu^{-1} \Delta$. (Cf. Stone [4].)
§ 5. Outline of the proof. We introduce another linear integral transformation $F(t)$ as the following;
(12) $\quad F(t) f(x)$

$$
=(\nu / 4 \pi i t)^{1 / 2 n}(t / \nu i)^{N} \int_{R^{n}} \Delta e_{N}(x, y) \exp \left(i \nu r^{2}(x, y) / 4 t\right) f(y) \sqrt{g(y)} d y
$$

Our fundamental lemma is
Lemma. Let $a(x, y)$ be a function in $C^{\infty}\left(R^{n} \times R^{n}\right)$ which satisfies the same estimate as (9). Set

$$
\begin{equation*}
A f(x)=\int_{R^{n}} a(x, y) \exp \left(i \lambda r^{2}(x, y)\right) f(y) d y, \quad \lambda>0 . \tag{13}
\end{equation*}
$$

Then there exists a constant $C>0$ independent of λ and f such that we have

$$
\begin{equation*}
\|A f\| \leqq C \lambda^{-1 / 2 n}\|f\| \tag{14}
\end{equation*}
$$

for any f in $C_{0}^{\infty}\left(R^{n}\right)$. Here $\left\|\|\right.$ is the norm in $L^{2}\left(R^{n}, \sqrt{g} d x\right)$.
Theorem I is an immediate consequence of Lemma. We again apply this lemma and obtain estimates of the norm of the operator $F_{N}(t)$, that is,

$$
\begin{equation*}
\left\|F_{N}(t)\right\| \leqq C|t / \nu|^{N} . \tag{15}
\end{equation*}
$$

We denote $U(t)=\exp \left(i^{-1} t \Delta\right)$. Then the difference $R(t)=E_{N}(t)-U(t)$ can be written as

$$
\begin{equation*}
R(t)=\int_{0}^{t} U(t-s) F_{N}(s) d s \tag{16}
\end{equation*}
$$

The norm of it is majorized as
(17) $\quad\|R(t)\| \leqq C|t / \nu|^{N}|t|$.

The k-products of $E_{N}(t / k)$ turns out to be

$$
\begin{align*}
& E_{N}(t / k) E_{N}(t / k) \cdots E_{N}(t / k) \\
& \quad=(U(t / k)-R(t / k)) \cdots(U(t / k)-R(t / k)) \tag{18}
\end{align*}
$$

Since $U(t / k)$ is unitary, we obtain

$$
\begin{align*}
\left\|E_{N}(t / k) E_{N}(t / k) \cdots E_{N}(t / k)-U(t)\right\| & \leqq \sum_{j=1}^{k}\binom{k}{j}\|R(t / k)\|^{j} \tag{19}\\
& =(1+\|R(t / k)\|)^{k}-1
\end{align*}
$$

This tends to 0 as k goes to ∞ if $N \geqq 1$. Our theorems have been proved up to the proof of our lemma which will be given in the subsequent note [3].

References

[1] R. Feynman: Space-time approach to non-relativistic quantum mechanics. Review of Modern Physics, 20, 367-384 (1948).
[2] D. Fujiwara: Fundamental solution of partial differential operators of Schrödinger's type. I. Proc. Japan Acad., 50, 566-569 (1974).
[3] --: On the boundedness of integral transformations with highly oscillatory kernels (to appear).
[4] M. H. Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis. Amer. Math. Soc., New York (1932).

