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69. Analytic Functions in a Neighbourhood o Boundary

By Zenjiro KUIAM0CHI
Department of Mathematics Hokkaido University

(Comm. by Kinjir5 KUNUGI, M. Z. )., May 9, 1975)

Let R be an end of a Riemann surface with compact relative
boundary 3R. Let F(i=1,2,...) be a connected compact set such
thatF gl F=0" i:/: ], {F} clusters nowhere in R+3R and R--F(F F)
is connected. We call R’=R-F a lacunary end. If there exists a
determining sequence {(p)} of a boundary component p of R such
that inf G(z, po)>eo>O,n=l,2, and 3(p) is a dividing cut, we

say F is completely thin at p, where G(z, Po) is a Green’s function of
R’. If there exists an analytic function w-f(z)" z e R’ such that the
spherical area of f(R’) is finite over the w-sphere, we say R’ satisfies
the condition S. If there exists a non const, w--f(z) such that C(f(R’))
(complementary set of f(R’) with respect to w-sphere) is a set o positive
capacity, we say R’ satisfies the condition B. Thea we proved

Theorem ([1]). Let R be an end of a Riemann surface e 0. If F
is completely thin at p and R’--R--F satisfies the condition S, then the
harmonic dimension (the number of minimal points of R over p) c.

In this note we show the above theorem is valid under the condition
B instead of the condition S. Since if the spherical area of f(R’) oo, we
can find a neighbourhood o(p) of p such that C(f(!o(p) R’)) is a set
of positive capacity, the result which will be proved is an extension of
the theorem.

Let R e 0q be a Riemann surface. Let V(z) be a positive harmonic
unction ia R--F such that V(z)--oo oa F, V(z) is singular in R--F
and D(min (M, V(z)))<=Ma or any M c, a is a const., we call V(z) a
generalized Greea’s function (abbreviated by G.G.), where F is a set
of capacity zero. Thea

Lemma 1. 1) Let V(z) be a G.G. in R. Then there exists a

cons. such that D(min(M, V(z)))=Ma and 3---V(z)ds--a" C
{z e R V(z) M} for any M< co. 2). Let G(z, )(i= 1, 2, ...) be a

Green’s function and {p} be a sequence such that G(z, p) converges to
G(z, {p}). Then G(z, p) and G(z, (p}) are G.G.s such that

G(z,p)ds=2 and ---G(z, {p})ds_<2m (1)

Let R’:{z e R" G(z, P0)>/} and let /’ be the symmetric image of R’
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with respect to OR’= {z e R G(z, p0)=}. We have a doubled surface
/’ by identifying OR’ with its image. Then /’e 0. Let {p} be a
divergent sequence such that G’(z, p) coverges. In this case we say
{p} determines an ideal boundary point p" G’(z, p)= lim G’(z, p), where

G’(z, p) is Green’s unction o R’. We denote by z/(R’) all ideal
boundary point. Then G-Martin’s topology is introduced on R’--R’
+ z/(R’) with distance as ollows"

(Pi, Pj)= sup G(z, p) G(z,
+ V(z,

where Do is compact disc in R’.
By (1) we define G’(p, q) or p and q e R’ by

G’(p, q)=__lim --21(, G’(:, q)3-G’(:, p)ds,

where V(p)= {z e R" G’(z, p)>M}. Then G’(p, q) is lower semicontinu-
ous in R’ ’ and

Lemma ([2]). Let F-- {z e z/(R’)" G’(z, Po) >= }. Then

D(F)=l/lim inf 1 , G’(p,p)=O for ny >0.
la,pjz nC i<j

i=1

We suppose Martin’s topology M-top. is defined on R with kernels
K(z, p).s. Let G={z e R" G(z, po)>3} and G(M) be its closure with
respect to M-top. Then

Lemma 3 ([3]). Let V(z) be a positive harmonic function in R and
a G.G. inR. Then

V(z)= K(z, p)d/(p),

Where g is a canonical mass on J AI(M) G(M) and AI(M) is a set of
>0

minimal boundary points of R.
Let/2 be a domain in the w-sphere such that C9 is a set of positive

capacity. Let G(w, ) be a Green’s unction of 9. We define G(p, q)

for p and q e by Gw(p, q)-lim Gw(, ]). Then G(q, p)--G(p, q) and
y-q

G(w, p) is upper semicontinuous on 9 9 and
Lemma4. Let F be a closed set on tO. If

D(F)=l/lim inf 1 , G(p,,p)=O,
p,pGF he2 i<j

i=l

F is a set of (logarithmic) capacity zero.

Lemma 5 ([3]). Let U(w) be a potential such that U(w)

=.[ G(w, p)d/(p). If dl(p)<c and U(w)>=aG(w, s)" a>O, then

has mass _> a at s.
Let R and/ be Riemann surfaces R
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topologies M and M-top s are defined over R and R with kernels K(z, p)
and K(z, p). Let G(z, Po) be a Green’s function of R. Let /(M) and
/(M) be sets of minimal boundary points f R and R, p be a boundary
component of R and iT(p) be the set points (relative to M or M top. s)
lying over p. Let F(a) {z" lim G(z, P0)->_ }, where a M or M. Then

Lemma
F(M) (M) iT(p) F(M) (M) 7(p),

where means one to one mapping.

Let RR0 be Riemann surface. Let w-f(z)’zeR be an
analytic function of bounded type. We shall define another Riemnn
surface R*. We can find a segment S in R such that there exists a
neighbourhood v(S) of S f(z) is univalent in v(S). Let ff be a leaf
with projection=f(R). Let S be a segment in ff with projection S.
We connect S and S crosswise. Then we have a Riemann surface
R*=(-S)+(R-S)+S and R--SR*. Put f(z)=proj, z 0r
z e -S. Then f(z) is analytic continuation of f(z) into -S and
we can suppose w=f(z) is defined in R*. So long as we consider the
behaviour of f(z)near the boundary of R, we can use R* instead
R. Let 3 be the relative boundary of which is clearly=3(f(R)) in
the w-sphere. Let u(z) be a harmonic measure of 3 in R*. Then
by R e, O u(z) 1 in R*. Let U(w)=, u(z)" z e R*, f(z)=w. Then

Lemma 7 ([1]). U(w) <= 1.
By use of Lemma 7 we have

Theorem 1. Let R R e O be Riemann surfaces and let w-- f(z)
be an analytic function of bounded type in R. Then

M
1) Let z--p e R and z e G={z e R" G(z, Po) 3}. Then f(z)

-on uniquely determined point denoted by f(p) and there exists a
uniquely determined connected piece (o(p) such that o(p) z for i>__i(r)
lying over w-f(P) l( r for any r O.

M
2) Let z >p zl(M)" G(z, po)3O. Then f(z)-f(p) and

there exists uniquely determined connected piece o(p) such that z
for i >= i(r) for any r.

Let
A(zI(M), )-{w" w-- f(p) p e zl(M) G(M)}, A(zI(M), )

--{w" w--f(p) p e (M) G(M)}
and

A((M) G(M)) {w" w f(p) e A(M) G(M)}.
Then we have by Lemmas 2, 4 ad Theorem 1

Theorem 2o A(t(M), )A(zI(M), )A(I(M), ) and A(I(M), )
is a closed set of capacity zero for any 0.
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Let u(p, M)= lira u(z) and u(p, i1)= lim u(z). Then by Lemma 7 we have
zp zp

M

Theorem :. u(z) - , u(p, M) <: 1 and , u(z) + , u(p, M) <__ 1,
where z e R and p e AI(M) f(z)=f(p)-w and z e R p e At(M).

Let RcR be a lacunary end. It is desirable to formulate the
behaviour of analytic functions with respect to M-top over R not to
M-top over R, to discuss the relation between the existence of analytic

functions and the structure of zl(M), the boundary of R. Let p and
p be points in zl(M). If there exists a sequence of curves
{F} (n=l, 2, ...) with two endpoints z (i-1,2) such that z
p, inf G(z, P0)e00 and F-.boundary of R, we say p and p are

zl"n

chained. Suppose f(z) is bounded type. Then by Theorem 2 we see
f(p)--f(p) for two chained points in z/(M). Suppose R is an end of
a Riemann surface and F is completely thin at p, then we see easily

any two points p and pz in zl(M)/7(p) are chained and f(p)=f(pz).
On the other hand, we can find a number no such that R P0 and

1 G(z Po) in R--/o and u(p, iI)there exists a const. K such that u(z)>=--.

_> e_A_0 for p e l()/7(p), where {/} is an exhaustion of /. Let
-K
p (i= 1, 2, ..., i0) be a point in z/(M) 1/7(p). Then f(p)--f(p2)=...

and u(p)> e_A_0 By Theorem 3 u(p, M)< 1. Hence i0<.K Thusg 0

we have following

Theorem 4. Let R be an end and F be completely thin at p. If
there exists an analytic function w--f(z) of bounded type in R--F,
then AI(M) /7(p) consists of at most a finite number of points.

Let R--R-F be lacunary end. Suppose z/(M)
A(M) G,(M) /7(p) for any ’ . Then we have by Lemma 5 we can

find a number 00 such that
A(M) Go(M) /7(p) A(M) G,,(M) /7(p) for any "<0and

(w-- f(p) p e A(M) G(M)}-(w--f(P) p e A(M)
Let (z} be a sequence in R such that G(z, p0)00 and z-*p. Then

zt M
we can find a subsequence { } of {z} such that z---p e (M) Go(M)

7(p), whence f(z)-.f(p). Now by G(z, Po) o, K(z, p) is a G.G and
by Lemma 3

K(z, p)=.[ K(z, q)d/(q),

where/ is a canonical mass on (M) Go(M) /7(p). Let G’(w, w’) be
a Green’s function of f(R). Then by G(z, z)<= G(f(z), f(z)) we have
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whence

K(z, q) <= G(f(z)’ f(q))

o or q e A(M) G,o(M),

K(z, p) ol G(f(z), f(q))dl(q) < c by ; dg(q)__< 1.

Now the mapping w=f(p)" p e A(M) Go(M) is continuous. There
exists a mass , on

A {w" w f(q)" q e A(M) Go(M) g(p)}
such that

G(f(z), f(q))dz(q)=; G(f(z), t)d,(t).

Let E*K(z, p)the lower envelope of superharmonic functions in f(R)
larger than K(z, p). Then

E*K(z, p)-aG(w, f(p)) .[ G(w, t)d,(t).

This means f(p)e A. Hence we have
Theorem 5. Let R=R--F be a lacury end. If there exists a

const, such that
A,()G,()g(O)=A()G,(M)g(O) for ’.

Let w= f(z)" z e R be an analytic function of bounded type. Then

U f(G, (p)) {w f(p)" p e A(M) G(M) V(O)},
>0

Applying this theorem to the case F is completely thi at p, the
f(G. (p)) f(p) f(p), f(Po).

>0
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