69. Analytic Functions in a Neighbourhood of Boundary

By Zenjiro KURAMOCHI

Department of Mathematics Hokkaido University

(Comm. by Kinjirô KUNUGI, M. J. A., May 9, 1975)

Let R be an end of a Riemann surface with compact relative boundary ∂R . Let $F_i(i=1,2,\cdots)$ be a connected compact set such that $F_i \cap F_j=0: i\neq j, \{F_i\}$ clusters nowhere in $R + \partial R$ and $R - F(F=\Sigma F_i)$ is connected. We call R'=R-F a lacunary end. If there exists a determining sequence $\{\mathfrak{V}_n(\mathfrak{p})\}$ of a boundary component \mathfrak{p} of R such that $\inf_{z\in\partial\mathfrak{V}_n(\mathfrak{p})} G(z, p_0) > \varepsilon_0 > 0, n=1, 2, \cdots$ and $\partial\mathfrak{V}_n(\mathfrak{p})$ is a dividing cut, we say F is completely thin at \mathfrak{p} , where $G(z, p_0)$ is a Green's function of R'. If there exists an analytic function $w=f(z): z \in R'$ such that the spherical area of f(R') is finite over the w-sphere, we say R' satisfies the condition S. If there exists a non const. w=f(z) such that C(f(R'))(complementary set of f(R') with respect to w-sphere) is a set of positive capacity, we say R' satisfies the condition B. Then we proved

Theorem ([1]). Let R be an end of a Riemann surface $\in 0_g$. If F is completely thin at \mathfrak{p} and R'=R-F satisfies the condition S, then the harmonic dimension (the number of minimal points of R over \mathfrak{p}) $<\infty$.

In this note we show the above theorem is valid under the condition B instead of the condition S. Since if the spherical area of $f(R') < \infty$, we can find a neighbourhood $\mathfrak{B}_{n_0}(\mathfrak{p})$ of \mathfrak{p} such that $C(f(\mathfrak{B}_{n_0}(\mathfrak{p}) \cap R'))$ is a set of positive capacity, the result which will be proved is an extension of the theorem.

Let $R \in 0_q$ be a Riemann surface. Let V(z) be a positive harmonic function in R-F such that $V(z) = \infty$ on F, V(z) is singular in R-Fand $D(\min(M, V(z))) \leq M\alpha$ for any $M < \infty$, α is a const., we call V(z) a generalized Green's function (abbreviated by G.G.), where F is a set of capacity zero. Then

Lemma 1. 1) Let V(z) be a G.G. in R. Then there exists a cons. α such that $D(\min(M, V(z))) = M\alpha$ and $\int_{C_M} \frac{\partial}{\partial n} V(z) ds = \alpha : C_M$ = $\{z \in R : V(z) = M\}$ for any $M < \infty$. 2). Let $G(z, p_i)(i=1, 2, \cdots)$ be a Green's function and $\{p_i\}$ be a sequence such that $G(z, p_i)$ converges to $G(z, \{p_i\})$. Then G(z, p) and $G(z, \{p_i\})$ are G.G.s such that

$$\int_{\mathcal{C}_{\mathcal{M}}} \frac{\partial}{\partial n} G(z, p) ds = 2\pi \quad \text{and} \quad \int_{\mathcal{C}_{\mathcal{M}}} \frac{\partial}{\partial n} G(z, \{p_i\}) ds \leq 2\pi.$$
(1)

Let $R' = \{z \in R : G(z, p_0) > \delta\}$ and let \hat{R}' be the symmetric image of R'

with respect to $\partial R' = \{z \in R ; G(z, p_0) = \delta\}$. We have a doubled surface \tilde{R}' by identifying $\partial R'$ with its image. Then $\tilde{R}' \in O_g$. Let $\{p_i\}$ be a divergent sequence such that $G'(z, p_i)$ converges. In this case we say $\{p_i\}$ determines an ideal boundary point $p: G'(z, p) = \lim G'(z, p_i)$, where

 $G'(z, p_i)$ is a Green's function of R'. We denote by $\Delta(R')$ all ideal boundary point. Then G-Martin's topology is introduced on $\overline{R}' = R' + \Delta(R')$ with distance as follows:

$$\delta(p_i, p_j) = \sup_{z \in D_0} \left| \frac{G(z, p_i)}{1 + G(z, p_i)} - \frac{G(z, p_j)}{1 + G(z, p_j)} \right|$$

where D_0 is a compact disc in R'.

By (1) we define G'(p,q) for p and $q \in \overline{R}'$ by

$$G'(p,q) = \lim_{M \to \infty} \frac{1}{2\pi} \int_{\partial V_M(p)} G'(\zeta,q) \frac{\partial}{\partial n} G'(\zeta,p) ds,$$

where $V_M(p) = \{z \in R' : G'(z, p) \ge M\}$. Then G'(p, q) is lower semicontinuous in $\overline{R'} \times \overline{R'}$ and

Lemma ([2]). Let
$$F = \{z \in \Delta(R') : G'(z, p_0) \ge \delta\}$$
. Then

$$D(F) = 1/\lim_{n = \infty} \inf_{p_i, p_j \in F} \frac{1}{nC_2} \sum_{\substack{i < j \\ i < j}}^n G'(p_i, p_j) = 0 \quad \text{for any } \delta > 0.$$

We suppose Martin's topology *M*-top. is defined on \overline{R} with kernels K(z, p).s. Let $G_{\delta} = \{z \in R : G(z, p_{0}) \geq \delta\}$ and $\overline{G}_{\delta}(M)$ be its closure with respect to *M*-top. Then

Lemma 3 ([3]). Let V(z) be a positive harmonic function in R and a G.G. in R. Then

$$V(z) = \int K(z, p) d\mu(p),$$

where μ is a canonical mass on $\bigcup_{\delta>0} \Delta_1(M) \cap \overline{G}_{\delta}(M)$ and $\Delta_1(M)$ is a set of minimal boundary points of R.

Let Ω be a domain in the *w*-sphere such that $C\Omega$ is a set of positive capacity. Let $G^w(w,\zeta)$ be a Green's function of Ω . We define $G^w(p,q)$ for p and $q \in \overline{\Omega}$ by $G^w(p,q) = \overline{\lim_{\substack{\xi \to p \\ \eta \neq q}}} G^w(\xi,\eta)$. Then $G^w(q,p) = G^w(p,q)$ and

 $G^{w}(w, p)$ is upper semicontinuous on $\overline{\Omega} \times \overline{\Omega}$ and

Lemma 4. Let F be a closed set on $\overline{\Omega}$. If

$$D(F) = 1/\lim_{n = \infty} \inf_{p_i, p_j \in F} \frac{1}{{}_nC_2} \sum_{\substack{i < j \\ i = 1}}^n G^w(p_i, p_j) = 0,$$

F is a set of (logarithmic) capacity zero.

Lemma 5 ([3]). Let U(w) be a potential such that $U(w) = \int G^w(w, p) d\mu(p)$. If $\int d\mu(p) < \infty$ and $U(w) \ge \alpha G^w(w, s) : \alpha > 0$, then μ has mass $\ge \alpha$ at s.

Let R and \tilde{R} be Riemann surfaces $R \subset \tilde{R} \in O_g$. We suppose Martin's

Z. KURAMOCHI

[Vol. 51,

topologies \tilde{M} and M-top s are defined over \tilde{R} and R with kernels $\tilde{K}(z, p)$ and K(z, p). Let $G(z, p_0)$ be a Green's function of R. Let $\Delta_1(\tilde{M})$ and $\Delta_1(M)$ be sets of minimal boundary points of \tilde{R} and R, \mathfrak{p} be a boundary component of \tilde{R} and $V(\mathfrak{p})$ be the set points (relative to \tilde{M} or M top. s) lying over \mathfrak{p} . Let $F_{\delta}(\alpha) = \{z : \lim_{t \in T} G(z, p_0) \ge \delta\}$, where $\alpha = \tilde{M}$ or M. Then

Lemma 6.

 $F_{\mathfrak{s}}(\tilde{M}) \cap \mathcal{L}_{\mathfrak{l}}(\tilde{M}) \cap \mathcal{V}(\mathfrak{p}) \approx F_{\mathfrak{s}}(M) \cap \mathcal{L}_{\mathfrak{l}}(M) \cap \mathcal{V}(\mathfrak{p}),$

where \approx means one to one mapping.

Let $R \subset \tilde{R} \in 0_q$ be Riemann surface. Let $w = f(z) : z \in R$ be an analytic function of bounded type. We shall define another Riemann surface R^* . We can find a segment S in R such that there exists a neighbourhood v(S) of S f(z) is univalent in v(S). Let \mathcal{F} be a leaf with projection = f(R). Let $S_{\mathcal{F}}$ be a segment in \mathcal{F} with projection S. We connect S and $S_{\mathcal{F}}$ crosswise. Then we have a Riemann surface $R^* = (\mathcal{F} - S_{\mathcal{F}}) + (R - S) + S$ and $R - S \subset R^*$. Put f(z) = proj. z for $z \in \mathcal{F} - S_{\mathcal{F}}$. Then f(z) is analytic continuation of f(z) into $\mathcal{F} - S_{\mathcal{F}}$ and we can suppose w = f(z) is defined in R^* . So long as we consider the behaviour of f(z) near the boundary of R, we can use R^* instead of R. Let $\partial \mathcal{F}$ be the relative boundary of \mathcal{F} which is clearly $= \partial(f(R))$ in the w-sphere. Let u(z) be a harmonic measure of $\partial \mathcal{F}$ in R^* . Then by $\tilde{R} \in 0_q$ u(z) < 1 in R^* . Let $U(w) = \sum u(z_i) : z \in R^*, f(z_i) = w$. Then Lemma 7 ([1]). $U(w) \leq 1$.

By use of Lemma 7 we have

Theorem 1. Let $R \subset \tilde{R} \in O_g$ be Riemann surfaces and let w = f(z) be an analytic function of bounded type in R. Then

1) Let $z_i \xrightarrow{M} p \in \overline{R}$ and $z_i \in G_s = \{z \in R : G(z, p_0) > \delta\}$. Then $f(z_i) \rightarrow a$ uniquely determined point denoted by f(p) and there exists a uniquely determined connected piece $\omega(p)$ such that $\omega(p) \ni z_i$ for $i \ge i(r)$ lying over |w - f(p)| < r for any r > 0.

2) Let $z_i \xrightarrow{\tilde{M}} p \in \Delta_1(\tilde{M}) : G(z_i, p_0) > \delta > 0$. Then $f(z_i) \to f(p)$ and there exists uniquely determined connected piece $\omega(p)$ such that $z_i \in \omega(p)$ for $i \ge i(r)$ for any r.

Let

$$A(\varDelta_{1}(\tilde{M}), \delta) = \{ w : w = f(p) : p \in \varDelta_{1}(\tilde{M}) \cap \overline{G}_{\delta}(\tilde{M}) \}, A(\varDelta_{1}(M), \delta) \\ = \{ w : w = f(p) : p \in \varDelta_{1}(M) \cap \overline{G}_{\delta}(M) \}$$

and

$$A(\varDelta(M) \cap \overline{G}_{\delta}(M)) = \{ w : w = f(p) : \in \varDelta(M) \cap G_{\delta}(M) \}$$

Then we have by Lemmas 2, 4 and Theorem 1

Theorem 2. $A(\varDelta_1(\tilde{M}), \delta) \subset A(\varDelta_1(M), \delta) \subset A(\varDelta(M), \delta)$ and $A(\varDelta(M), \delta)$ is a closed set of capacity zero for any $\delta > 0$.

No. 5]

Let $u(p, M) = \overline{\lim_{z_{\tilde{M}}^p}} u(z)$ and $u(p, \tilde{M}) = \overline{\lim_{z_{\tilde{M}}^p}} u(z)$. Then by Lemma 7 we have

Theorem 3. $\sum u(z_i) + \sum u(p_i, \tilde{M}) \leq 1$ and $\sum u(z_i) + \sum u(p_i, M) \leq 1$, where $z_i \in R$ and $p_i \in \mathcal{A}_1(\tilde{M})$ $f(z_i) = f(p_i) = w$ and $z_i \in \tilde{R}$ $p_i \in \mathcal{A}_1(M)$.

Let $R \subset \tilde{R}$ be a lacunary end. It is desirable to formulate the behaviour of analytic functions with respect to \tilde{M} -top over \tilde{R} not to M-top over R, to discuss the relation between the existence of analytic functions and the structure of $\Delta(\tilde{M})$, the boundary of \tilde{R} . Let p_1 and p_2 be points in $\Delta(\tilde{M})$. If there exists a sequence of curves $\{\Gamma_n\}$ $(n=1,2,\cdots)$ with two endpoints z_n^i (i=1,2) such that $z_n^i \xrightarrow{\tilde{M}} p_i$, $\inf_{z \in \Gamma_n} G(z, p_0) > \varepsilon_0 > 0$ and $\Gamma_n \rightarrow$ boundary of \tilde{R} , we say p_1 and p_2 are chained. Suppose f(z) is bounded type. Then by Theorem 2 we see $f(p_1) = f(p_2)$ for two chained points in $\Delta_1(\tilde{M})$. Suppose R is an end of a Riemann surface and F is completely thin at \mathfrak{p} , then we see easily any two points p_1 and p_2 in $\Delta_1(\tilde{M}) \cap F(\mathfrak{p})$ are chained and $f(p_1) = f(p_2)$. On the other hand, we can find a number n_0 such that $\tilde{R}_{n_0} \ni p_0$ and there exists a const. K such that $u(z) \geqq \frac{1}{K} G(z, p_0)$ in $R - \tilde{R}_{n_0}$ and $u(p, \tilde{M})$

 $\geq \frac{\varepsilon_0}{K} \text{ for } p \in \mathcal{A}_1(\tilde{M}) \cap \mathcal{V}(\mathfrak{p}), \text{ where } \{\tilde{R}_n\} \text{ is an exhaustion of } \tilde{R}. \text{ Let } \\ p_i \ (i=1,2,\cdots,i_0) \text{ be a point in } \mathcal{A}_1(\tilde{M}) \cap \mathcal{V}(\mathfrak{p}). \text{ Then } f(p_1) = f(p_2) = \cdots \\ \text{ and } u(p_i) \geq \frac{\varepsilon_0}{K}. \text{ By Theorem 3 } \sum u(p_i,M) \leq 1. \text{ Hence } i_0 \leq \frac{K}{\varepsilon_0}. \text{ Thus } \\ \text{ we have following }$

Theorem 4. Let \tilde{R} be an end and F be completely thin at \mathfrak{p} . If there exists an analytic function w = f(z) of bounded type in $\tilde{R} - F$, then $\Delta_1(\tilde{M}) \cap V(\mathfrak{p})$ consists of at most a finite number of points.

Let $R = \tilde{R} - F$ be lacunary end. Suppose $\Delta_1(\tilde{M}) \cap \overline{G}_{\delta}(\tilde{M}) \cap \overline{P}(\mathfrak{p}) = \Delta_1(M) \cap \overline{G}_{\delta'}(M) \cap \overline{P}(\mathfrak{p})$ for any $\delta' < \delta$. Then we have by Lemma 5 we can find a number $\delta_0 > 0$ such that

 $\Delta_{1}(M) \cap \overline{G}_{\mathfrak{z}_{0}}(M) \cap \mathcal{V}(\mathfrak{p}) = \Delta_{1}(M) \cap \overline{G}_{\mathfrak{z}''}(M) \cap \mathcal{V}(\mathfrak{p}) \text{ for any } \delta'' < \delta_{0}$ and

 $\{w = f(p) : p \in \mathcal{A}_{1}(\tilde{M}) \cap \overline{G}_{\mathfrak{s}}(\tilde{M})\} = \{w = f(P) : p \in \mathcal{A}_{1}(M) \cap \overline{G}_{\mathfrak{s}_{0}}(M) \cap \mathcal{P}(\mathfrak{p})\}.$ Let $\{z_{i}\}$ be a sequence in R such that $G(z_{i}, p_{0}) > \varepsilon_{0} > 0$ and $z_{i} \rightarrow \mathfrak{p}$. Then we can find a subsequence $\{z'_{i}\}$ of $\{z_{i}\}$ such that $z'_{i} \xrightarrow{M} p \in \mathcal{A}(M) \cap \overline{G}_{\mathfrak{s}_{0}}(M)$ $\cap \mathcal{P}(\mathfrak{p})$, whence $f(z_{i}) \rightarrow f(p)$. Now by $G(z_{i}, p_{0}) > \varepsilon_{0}, K(z, p)$ is a G.G and by Lemma 3

$$K(z, p) = \int K(z, q) d\mu(q),$$

where μ is a canonical mass on $\mathcal{A}_1(M) \cap \overline{G}_{z_0}(M) \cap \mathcal{V}(\mathfrak{p})$. Let $G^w(w, w')$ be a Green's function of f(R). Then by $G(z, z_i) \leq G^w(f(z), f(z_i))$ we have Z. KURAMOCHI

$$K(z,q) \leq rac{G^w(f(z),f(q))}{\delta_0} \qquad ext{for } q \in arDelta_1(M) \cap \overline{G}_{\iota_0}(M),$$

whence

$$K(z,p) \leq rac{1}{\delta_0} \int G^w(f(z),f(q)) d\mu(q) < \infty \qquad ext{by } \int d\mu(q) \leq 1.$$

Now the mapping $w = f(p): p \in \Delta(M) \cap \overline{G}_{s_0}(M)$ is continuous. There exists a mass ν on

$$A = \{ w : w = f(q) : q \in \mathcal{A}_1(M) \cap \overline{G}_{\delta_0}(M) \cap \mathcal{V}(\mathfrak{p}) \}$$

such that

$$\int G^w(f(z), f(q))d\mu(q) = \int G^w(f(z), t)d\nu(t).$$

Let $E^*K(z, p)$ the lower envelope of superharmonic functions in f(R) larger than K(z, p). Then

$$E^*K(z,p) = aG^w(w,f(p)) \leq \int G^w(w,t)d\nu(t).$$

This means $f(p) \in A$. Hence we have

Theorem 5. Let $R = \tilde{R} - F$ be a lacunary end. If there exists a const. such that

$$\begin{split} & \mathcal{A}_{1}(\tilde{M}) \cap \overline{G}_{\mathfrak{s}}(\tilde{M}) \cap \overline{V}(\mathfrak{p}) = \mathcal{A}_{1}(\tilde{M}) \cap \overline{G}_{\mathfrak{s}'}(M) \cap \overline{V}(\mathfrak{p}) \quad for \ \mathfrak{d}' \leq \delta. \\ Let \ w = f(z) : z \in R \ be \ an \ analytic \ function \ of \ bounded \ type. \quad Then \\ & \bigcup_{i \geq 0} \bigcap_{n} f(\overline{G_{\mathfrak{s}} \cap \mathfrak{V}_{n}(\mathfrak{p})}) = \{w = f(p) : p \in \mathcal{A}_{1}(\tilde{M}) \cap \overline{G}_{\mathfrak{s}}(\tilde{M}) \cap \overline{V}(\mathfrak{p})\}, \end{split}$$

where $G_{\epsilon} = \{z \in R : G(z, p_0) > \epsilon\}$ and $\{\mathfrak{V}_n(\mathfrak{p})\}$ is a determining sequence of \mathfrak{p} in \tilde{R} .

Applying this theorem to the case F is completely thin at \mathfrak{p} , then $\bigcup_{i>0} \bigcap_{n} \overline{f(G_{\bullet} \cap \mathfrak{B}_{n}(\mathfrak{p}))} = f(p_{1}) = f(p_{2}), \dots = f(p_{i_{0}}).$

References

- [1] Z. Kuramochi: Analytic functions in a lacunary end of a Riemann surface (to appear in Ann. Inst. Fourier).
- [2] ——: On the existence of functions of Evan's type. J. Fa. Sci. Hokkaido Univ., 19, 1-27 (1965).
- [3] ——: On harmonic functions representable by Poisson's integral. Osaka Math. J., 10, 103-117 (1958).

[Vol. 51,