65. On Some Evolution Equations of Subdifferential Operators

By Kenji Maruo
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., May 9, 1975)

1. Introduction. In this paper we are concerned with nonlinear evolution equations of a form

$$
\begin{equation*}
\frac{d u}{d t}+\partial \psi^{t} u(t)+A(t) u(t) \ni f(t), \quad 0 \leqq t \leqq T \tag{1.1}
\end{equation*}
$$

in a real Hilbert space H. Here for each fixed $t, \partial \psi^{t}$ is subdifferential of a lower semicontinuous convex function ψ^{t} from H into $\left(-\infty, \infty\right.$], ψ^{t} $\not \equiv \infty$ and $A(t)$ is a monotone, single valued and hemicontinuous operator which is perturbation in a sense. The effective domain of ψ^{t} defined by $\left\{u \in H: \psi^{t}(u)<+\infty\right\}=D$ is independent of t. We denote the inner product and the norm in H by (,) and $\|\|$ respectively. Let T be a positive constant.

We assume the following conditions for ψ^{t} and $A(t)$.
A-(1). For every $r>0$ there exists a positive constant $L_{1}(r)$ such that

$$
\left|\psi^{t}(u)-\psi^{s}(u)\right| \leqq L_{1}(r)|h(t)-h(s)|\left\{\psi^{t}(u)+1\right\}
$$

hold if $0 \leqq s, t \leqq T, u \in D$ and $\|u\| \leqq r$, where $h(t)$ is a continuous function with bounded total variation.

A-(2). If $u(t) \in D$ is absolutely continuous on $[a, b](0 \leqq a<b \leqq T)$ then $A(t) u(t)$ is strongly measurable on $[a, b]$ and for any fixed $t_{0} \in[a, b] A\left(t_{0}\right) u(t)$ is also strongly measurable on $[a, b]$. For any fixed $u \in D, A(t) u$ is continuous on $[0, T]$.

A-(3). There are Riemann integrable functions $W_{r}(t)^{2}$ on $[0, T]$ and a constant $0<K_{r}<1 / 2$ such that

$$
\|A(t) u\| \leqq K_{r}\left\|\mid \partial \psi^{t} u\right\| \|+W_{r}(t) \quad \text { for any }\|u\| \leqq r
$$

A-(4). If $u(t)$ is absolutely continuous and $\left|\psi^{t}(u)\right|+\|u(t)\| \leqq r$, then $A(t) u(t) \leq W_{r}(t)^{2}$.

Under the above assumptions we consider the uniqueness and existence of the solution of (1-1) where the solution is defined as follows:

Definition 1.1. We say that $u(t)$ is a solution of (1-1) if and only if $u(t)$ is continuous on [$0, T$] and absolutely continuous on ($0, T$] and if (1-1) holds almost everywhere on [0, T].

Theorem 1.1. Suppose that the assumptions stated above are satisfied. Then we hold the unique solution of (1-1) where $f \in L_{2}[0, T ; H]$ and the initial date $u_{0} \in \bar{D}$.

Remark 1.1. The continuity assumption A-(1) is weaker than those of J. Watanabe [3] and H. Attouch and A. Damlamian [1].
2. The outline of the proof. Using $\psi^{0}(a) \geqq C^{\prime}\|a\|+D^{\prime}$ and A-(1), we get the following lemma.

Lemma 2.1. There exist constants C_{1} and C_{2} which are independent of t and α such that

$$
\psi^{t}(\alpha) \geq C_{1}\|\alpha\|+C_{2} \quad \text { for any } \alpha \in H .
$$

We take a sequence $\left\{t_{i}\right\}_{i=1}^{n}$ such that $0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=T$ and $t_{i} \in I$ for any $i=0,2, \cdots, n$ and $\left|t_{i}-t_{i-1}\right| \rightarrow 0$ as $n \rightarrow \infty$ for any $i=1,2, \cdots, n$. We denote by

$$
\psi_{n}^{t}(u)=\psi^{t_{i}}(u), A_{n}(t)=A\left(t_{i}\right), \text { for } t_{i} \leq t<t_{i+1} .
$$

We consider the following evolution equations

$$
\left\{\begin{array}{l}
\frac{d}{d t} u_{n}^{i}+\left(\partial \psi_{n}^{t}+A_{n}(t)\right) u_{n}^{i}(t) \ni f(t) \quad t_{i} \leq t<t_{i+1} \tag{2-1}\\
u_{n}^{i}\left(t_{i}\right)=u_{n}^{i-1}\left(t_{i}\right) \text { and } u_{n}^{0}(0)=u_{0} \in D \quad \text { for } i=0,1, \\
\cdots n-1 \text { and } f(t) \in L^{2}[0, T: H] .
\end{array}\right.
$$

The solution of (2-1) is defined inductively by the solution of a operator with constant coefficients. For the sake of simplicity we write $u_{n}(t)$ $=u_{n}^{i}(t)$.

Using that $\left\{u_{n}(t)\right\}$ are the solutions of (2-1) and Lemma 1 we get the following lemma.

Lemma 2.2. There is a constant γ independent of n and t such that

$$
\left\|u_{n}(t)\right\| \leqq \gamma .
$$

On the other hand since we get

$$
\frac{d}{d t} \psi_{n}^{t}\left(u_{n}\right)+\left\|\frac{d}{d t} u_{n}\right\|^{2}=\left(f(t)-A_{n}(t) u_{n}, \frac{d}{d t} u_{n}\right)
$$

from H. Brezis [2]. Since $u_{n}(t)$ is a strong solution of (2-1) we see

$$
\begin{equation*}
\psi_{n}^{t}\left(u_{n}(t)\right)+\delta \int_{t_{i}}^{t}\left\|\frac{d}{d t} u_{n}\right\|^{2} d t \leqq \psi_{n}^{t_{i}}\left(u_{n}\left(t_{i}\right)\right)+\int_{t_{i}}^{t} C_{\delta}\left(\|f\|+W_{r}\right)^{2} d s \tag{2-2}
\end{equation*}
$$

from our assumption A-(3) where δ and C_{δ} are positive constants independent of n, t and t_{i}. Combining (2-2) and A-(1) we see

$$
\begin{align*}
\psi_{n}^{t_{i}}\left(u_{n}\left(t_{i+1}\right)\right) \leqq & \psi_{n}^{t_{i}}\left(u_{n}\left(t_{i}\right)\right)\left\{1+L_{1}(\gamma)\left|h\left(t_{i-1}\right)-h\left(t_{i}\right)\right|\right\} \\
& +\int_{t_{i}}^{t_{i+1}} C_{\delta}\left(f(s)+W\left(t_{i}\right)\right)^{2} d s+L_{1}(\gamma)\left|h\left(t_{i-1}\right)-h\left(t_{i}\right)\right| . \tag{2-3}
\end{align*}
$$

We put

$$
K=\left\{\int_{0}^{T} 2 C_{\delta}\|f\|^{2} d s+2 \int_{0}^{T} w_{r}^{2}(t) d t+L_{1}(\gamma) V(h)+\left|\psi^{0}\left(u_{0}\right)\right|+1\right\}
$$

then from (2-3) we see

$$
\begin{equation*}
\left|\psi_{n}^{t}\left(u_{n}(t)\right)\right|<3 K e^{K L_{1}(\gamma) V(h)} \tag{2-4}
\end{equation*}
$$

where $V(h)=$ tolal variation of h on $[0, T]$.
Combining (2-3) and (2-4) we get the following lemma.

Lemma 2-3. We know

$$
\left|\psi_{n}^{t}\left(u_{n}(t)\right)\right|+\int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|^{2} d t \leq C_{3}
$$

where C_{3} is a constant independent of n and t.
From the above lemma we know that there exists subsequence $\left\{\frac{d}{d t} u_{n_{f}}\right\}$ which is L_{2}-weakly convergent. For the sake of simplicity we put $u_{n}=u_{n_{j}}$. Thus we see that $u_{n}(t)$ is weak convergence to $u(t)$ and $u(t)$ is absolutely continuous on $[0, T]$. On the other hand since $u_{n}(t)$ is the solution of (2-1) we find

$$
\begin{aligned}
& \int_{0}^{T} \psi_{n}^{s}(v(s)) d s-\int_{0}^{T} \psi_{n}^{s}\left(u_{n}(s)\right) d s \\
& \quad \geqq \int_{0}^{T}\left(f(s)-A_{n}(s) u_{n}(s)-\frac{d}{d s} u_{n}(s), v(s)-u_{n}(s)\right) d s \\
& \quad \geqq \int_{0}^{T}\left(f(s)-A_{n}(s) v(s)-\frac{d}{d s} v(s), v(s)-u_{n}(s)\right) d s+1 / 2\left\|u_{0}-v(0)\right\|^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{0}^{T}\left(\psi^{s}(v(s))-\psi^{s}(u(s))\right) d s \\
& \quad \geqq \int_{0}^{T}\left(f(s)-A(s) v(s)-\frac{d}{d t} v(s), v(s)-u(s)\right) d s+1 / 2\left\|u_{0}+v(0)\right\|^{2}
\end{aligned}
$$

Next we put $v(t)=p u(t)+(1-p) w(t)$ where $w(t) \in D$ and is absolutely continuous.
Thus we obtain the following inequality

$$
\begin{aligned}
& \int_{0}^{T}\left(\psi^{s}(w(s))-\psi^{s}(u(s))\right) d s \\
& \quad \geqq \int_{0}^{T}\left(f(s)-A(s) u(s)-\frac{d}{d t} u(s), w(s)-u(s)\right) d s .
\end{aligned}
$$

Next for any fixed $\xi \in D$ and $0 \leqq t_{1}<t_{2} \leqq T$ we put

$$
w(t)=\left\{\begin{aligned}
\xi u\left(t_{1}\right)+q \xi: & t_{1}+\varepsilon \leqq t \leqq t_{2}-\varepsilon \\
u(t): & 0 \leqq t \leqq t_{1}+q\left(t_{1}+\varepsilon\right) \\
p u\left(t_{2}\right)+q \xi: & t=p t_{2}+\left(t_{2}-\varepsilon\right) q
\end{aligned}\right.
$$

where $p+q=1 p>0, q>0$ and $\varepsilon>0$.
If $\varepsilon \rightarrow 0$ we get

$$
\int_{t_{1}}^{t_{2}} \psi^{t}(\xi) d t-\int_{t_{1}}^{t_{2}} \psi^{t}(u(t)) d t \geqq \int_{t_{1}}^{t_{2}}\left(f(t)-A(t) u(t)-\frac{d}{d t} u(t), \xi-u(t)\right) d t
$$

For any Lebesque points of $\psi^{t} u(t), f(t) A(t) u(t), \frac{d}{d t} u(t)$, and $u(t)$ we know

$$
\psi^{t}(\xi)-\psi^{t} u(t) \geqq\left(f(t)-A(t) u(t)-\frac{d}{d t} u(t), \xi-u(t)\right) .
$$

Considering that $\partial \psi^{t}=A(t)$ is monotone operator we can show the uniqueness of (1-1). If $u_{0} \in D$ we can prove the theorem.

Next if $u_{0} \in \bar{D}$ we put $u_{m, 0}=\left(1+1 / m \partial \psi^{0}\right)^{-1} u_{0}$. We denote by $u_{m}(t)$ the solution of (1-1) of initial data $u_{m, 0}$. Since $\partial \psi^{t}+A(t)$ is monotone operator we see that $u_{m}(t)$ is uniformly convergent on [$0, T$] then $\lim _{m \rightarrow \infty} u_{m}(t)=u(t)$.

Using that $u_{m}(t)$ are strong solutions of (1-1) and A-(3) we know for any $0<\delta<T$,

$$
\int_{0}^{\delta} \psi^{t}\left(u_{m}(t)\right) d t \leq C_{4}
$$

where C_{4} is a constant independent of δ and m. There exist $0<\delta_{m}<\delta$ $m=1,2, \cdots$ such that

$$
\psi^{\delta_{m}}\left(u_{m}\left(\delta_{m}\right)\right) \leq \frac{1}{\delta} \int_{0}^{\delta} \psi^{t}\left(u_{m}(t)\right) d t \leq \frac{C_{4}}{\delta}=C_{5} .
$$

We denote by $v_{m}(t)$ the solution of (1-1) for the initial date $v\left(\delta_{m}\right)$ $=u_{m}\left(\delta_{m}\right) \in D$ on $\left[\delta_{m}, T\right]$. Then we find $v_{m}(t)=u_{m}(t)$ on $\left[\delta_{m}, T\right]$ from the uniqueness of the solution of (1-1). On the other hand noting the method of Lemma 2-3 we get

$$
\left|\psi_{n}^{t_{n}}\left(v_{m}^{n}(t)\right)\right| \leq C_{6} \quad \text { for } t \in\left[\delta_{m}, T\right]
$$

where C_{8} is independent of n and m.
Thus we get

$$
\int_{\delta}^{T}\left\|\frac{d u_{m}}{d t}(t)\right\|^{2} d t \leq \int_{\delta_{m}}^{T}\left\|\frac{d v_{m}}{d t}(t)\right\|^{2} d t \leq C_{7} .
$$

Using the above same method on $[\delta, T]$ we can prove the Theorem.

References

[1] H. Attouch et Damlamian: Problémes dévolution dans Les Hilbert et applications (to appear).
[2] H. Brezis: Propriétés régularisantes de certains semi groupes non linéaires. Israel. J. Math., 9, 513-534 (1971).
[3] J. Watanabe: On certain nonlinear evolution equations. J. Math. Soc. Japan, 25, 446-463 (1973).

