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87. Difference Approximation of Evolution Equations
and Generation of Nonlinear Semigroups

By Yoshikazu KOBAYASHI
Department of Mathematics, Waseda University

(Comm. by Kinjirdé KUNUGI, M. J. A., June 3, 1975)

We consider the following nonlinear evolution equation
(DE) (d/dtyu(t) e Au(t), 0<t<T,
where A is a (multi-valued) quasi-dissipative operator. In this note,
we construct the solution of the evolution equation (DE) by the method
of difference approximation. Inaddition, we give a generation theorem
of nonlinear semigroups through the difference approximation. We
sketch here our results. The details will be treated in [6].

1. Preliminaries. Let X be a real Banach space. For the multi-
valued operator A, we use the following notations:

DA)={reX; Ax#¢}, RA)=Usenw (¥;¥yecAx},
and |[||Az|||=inf {|y|; ¥y € Ax} for x € D(A).

We identify the multi-valued operator A with its graph, so that we
write [z, y] e A if y e Ax.

Let F' be the duality map from X into X*. Then we set

<y, vy, =inf { y, >; f e F(x)} for xz,y ¢ X.

Let ACXXX. A is said to be dissipative if for any [z, y;]c A

(’i= 1’ 2)’
Y=Yy X — 20 < 0.

According to Takahashi [9], we introduce the following notion as a
generalization of that of dissipative operators.

Definition 1. Let ACXXX. A is said to be quasi-dissipative
if for any [x;, ¥:1€ A (=1, 2),

LYy By — a3+ Yy X, — 2,0 <0,

The following example shows that quasi-dissipative operators are not
always dissipative.

Example (I. Miyadera). Let X=R? with the maximum norm.
Let #,=(1,1) and 2,=(0,0). We set D(A)={x,, x;}, Ax,={(&, p); <0
or <0} and Ax,={(e, B); ®>0 or >0}. Then A is quasi-dissipative
in X but A—ow is not dissipative in X for any real v. In addition,
R(I—24)DD(A) for any 21>0.

The following plays a central role in our argument.

Lemma 1. Let ACXXX. Then the following are equivalent:

(i) A is quasi-dissipative;
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(ii) for any [z;, y:le A ((=1,2) and 2, x>0,

A+ ) |2, —2, || <A 2, — 2 — ph |+ p || X, — 2, — 205 5

(iii) for any [x;, ¥l e A (1=1,2) and 1>0,

2@, — || <@ — 0 — AU, ||+ || €, — 2, — 2Y, |-
We can verify Lemma 1 similarly as Lemma 1.1 in Kato [4].

Let X,CcX. A oneparameter family {T'(¢); ¢t >0} of operators from
X, into itself is called (nonlinear) contraction semigroup on X, if it has
the following properties:

(1) IT®Oz—TOy|<L||z—y]| for x,y e X, and t>0;

(ii) TOx=2x for xc X, and T({t+s)=T&)T(s) for t,s>0:

(iii) for each x ¢ X,, T(t)x is strongly continuous in £>0.

2. Cauchy problems and difference approximation. Let A be
a quasi-dissipative operator in X. Let 2, X and T>0. Then we
treat the following Cauchy problem for the evolution equation (DE):
(CP; a,) {(d/ dt)yu(t) ¢ Au(t) for t € (0, 1),

u(0) =x,.

For the Cauchy problem (CP; z,), we consider the following type of
difference approximation:

x;cb - x;cl—l n n — .
DS 2) —M—ekeAxk, k=1,2,...,N,; n>1,

5=y,
where for each n, {t:} represents the partition of [0, T] such that 0
=trtr<. . . <t <T<Lty, and §,=max, .,y (r—1t;_)—0 as n—oo.
The ¢ may be referred as an error which occurs at the %-th step of the
n-th approximation of the difference approximation. In this sense
(DS; z,) can be regarded as an approximating difference scheme for
(CP; x,) which permits errors.

Definition 2. Let u,(t) be a sequence in L~(0,7T; X). We say
that u,(t) is a (backward) DS-approximate solution of the Cauchy
problem (CP; x,) if there exists a difference approximation (DS; x,)
satisfying the followings:

(1) u,0)=ap=2, n>1;

(ii) un(t)=x2 for ¢ € (tZ—U tﬁ] N (0, T]a k=1: 2’ Tty Nn; %21,

(i) 203 |kl (B —tr-)—0 as n—oo.

Then we have

Theorem 1. Let x, € D(A) and u,(t) be a DS-approximate solution
of (CP; x,) on [0, T]. Then there exists a u(t) e C([0, T1; X) satisfying
the followings:

(i) u@®=lim,_.u,(&) for tel0,T], and the convergence 1is
uniform on [0, TT;

(ii) u() e D(A) for te[0,T] and u(0)=x,;

(iii) for any DS-approximate solution 4,(t) of (CP; x,),
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u(t)=lim,_... %,(t) for te [0, T1.

Remarks. 1) Kenmochi-Oharu [5] and Takahashi [9], [10] studied
the convergence (i) under the additional condition, which is called the
stability condition by them. Our result is an extension of their results.

2) By Bénilan’s method [2], we find that the limiting function
#(t) is the unique integral solution of the Cauchy problem (CP; z,).

The proof of Theorem 1 is based on the following.

Lemma 2. Let(DS; x,) and (DS ; £,) be two diff erence approxima-
tions as above of the Cauchy problems (CP; x,) and (CP; £,) on [0,T],
respectively. Let the notations with the symbol “*” represent the
difference approximation (DS; £,). Then we have

g — 25 1<l 2 — |+ | o — e
(1) +{Er— T2+ 5t + 6,312 ||| Au] |
+ ke e (G =t )+ Tdan 81 G =2,
for 0<i<N,,,0<j7<N, and uec D(A).

Lemma 2 is proved by the method of Crandall-Liggett [3], modified
by Rasmussen [8] (see also Yosida [13]), by using Lemma 1.

Remark. Let A be a dissipative operator in X such that R(I —14)
DD(A) for 2>0. Then the estimate (1) gives

1 = 2A4) "% — (I — pA) =" || < {(nA—mp)+ nt+mp}2 ||| Az
for m,m>1, 2, p1>0 and x € D(A). This estimate is similar to but dif-
ferent from that of Crandall-Liggett [3].

By virtue of Theorem 1, we define the following.

Definition 3. Let u(t) € C([0, T1; X) and z,e D(A). We say that
u(t) is a (backward) DS-limit solution of the Cauchy problem (CP; z,)
on [0, T if there exists a (backward) DS-approximate solution w,(t) of
(CP; «,) on [0,T], such that u,(¢t) converges to u(f), uniformly for
te [0, T].

By Lemma 2, we have also

Corollary. Let u(t),4(t) be two DS-limit solutions of (CP) on
[0,T]. Then

[l u(®) — (@) || <||u(0) —#(0)||  for tel0, T].

3. Generation of semigroups. By Theorem 1 and Corollary, we
have a generation theorem of semigroups.

Definition 4. Let A be a quasi-dissipative operator in X. We
gay that A has the property () if for any x € D(A) and T >0, there
exists a DS-approximate solution of the Cauchy problem (CP; x) on
[0, T1.

Theorem 2. Let A be a quasi-dissipative operator in X, having
the property (D). Then there exists a contraction semigroup {T(t);t
>0} on D(A) such that for each x e D(A) and T>0,u(t)=TE)x is the
unique DS-limit solution of the Cauchy problem (CP; x) on [0, T].
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We give a sufficient condition that a quasi-dissipative operator
has the property (®). Let A be a quasi-dissipative operator in X.
We add the following condition on A:

for any x ¢ D(4), there exist a sequence 4, 10 and [x,,¥,]c A
(R,) (mn>1) such that
limn—ooo 5;1 ”xn""x"“‘anynuz()'

Then we have

Theorem 3. Let A be a quasi-dissipative operator in X, satisfying
the condition (R;). Then A has the property (D). Thus A generates
a contraction semigroup on D(A), in the sense of Theorem 2.

Remarks. 1) This theorem implies the fundamental result of
Crandall-Liggett [3]; a part of the results of Martin [7] on ordinary
differential equations; and the results of Webb [11] and Barbu [1] on
the continuous perturbations of m-dissipative operators.

2) Yorke announces in [12] that he obtained a similar result.

Sketch of the proof of Theorem 8. Let 2,€ D(A) and ¢, | 0. Let
7 be fixed. Then for each x € D(A), we define

d,(®)=sup {5; 0<6<¢, and there exists [z,, ;] € A
such that ||x,—x—dy,|| < de,}.
Then each §,(x) is positive by the assumption. Therefore, inductively,
we can choose 2:>0 and [x7, y?] € A, for k=1,2, -- -, so that they sat-
isfy the followings:

(1) 2p=w;

(ii) @/2)6.(x2_)<hr<e,, for k=1,2, ...,

(iii) sz—%-l—hﬁyﬁﬂﬁhﬁem for k=1’ 2» R
Then we set t7=>¢_, h?. We may show that t*»—co asi—oo. For the
purpose, we establish the following estimate:

(2) |27 — 3| < @D (| Yrll 4 enlt? — E7) 4 en(t; — £7)
for any i>7>k>1. This estimate may be verified by the induction
for (¢, j) with ¢>7>k for each fixed k>1, by using Lemma 1.
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