116. On Extensions of my Previous Paper "On the Korteweg.de Vries Equation"

By Masayoshi Tsutsumi
Department of Applied Physics, Waseda University

(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1975)

1. Introduction. Previously, in [1] we have proved the following result: Let $\left\{\varphi_{j}(x ; t)\right\}$ and $\left\{\lambda_{j}(t)\right\}, j=1,2, \cdots$, be a complete system of normalized eigenfunctions and eigenvalues, respectively, of the Schrödinger eigenvalue problem in T^{1}, T^{1} being a torus, with t considered as a parameter:

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} \varphi_{j}(x ; t)+u(x, t) \varphi_{j}(x ; t)=-\lambda_{j}(t) \varphi_{j}(x ; t), \tag{1.1}\\
\varphi_{j}(\cdot, t) \in C^{2}\left(T^{1}\right), \quad \text { for } \forall t \in(-\infty, \infty),
\end{array}\right.
$$

where $u(x, t)$ is a real function belonging to $C^{\infty}\left(T^{1} \times R^{1}\right)$. Then we have the asymptotic expansion:

$$
\begin{equation*}
\sum_{j=1}^{\infty} e^{-\lambda_{j}(t) s}\left(\varphi_{j}(x, t)\right)^{2} \sim \sum_{i=0}^{\infty} s^{i-1 / 2} P_{i}\left(u, \partial u / \partial u, \cdots, \partial^{2(i-1)} u / \partial x^{2(i-1)}\right) \tag{1.2}
\end{equation*}
$$

where P_{i} are uniquely determined and can be calculated explicitly in terms of the function u and its partial derivatives in x, of order $\leqq 2(i-1)$. If $u=u(x, t)$ evolves according to the equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\sum_{i=1}^{M} f_{i}(t) \frac{\partial}{\partial x} P_{i}\left(u, \cdots, \partial^{2(i-1)} u / \partial x^{2(i-1)}\right), \tag{1.3}\\
u(x, t) \in C^{\infty}\left(T^{1} \times R^{1}\right)
\end{array}\right.
$$

where M is an arbitrary fixed positive integer and $f_{i}(t)$ are arbitrary smooth function of t, then the eigenvalues $\lambda_{f}(t)$ of the associated eigenvalue problem (1.1) are constants in t and every $P_{i}(\cdot)$ appeared in (1.2) is the conserved density of (1.3).

In this note, two extensions of the above result are considered. One is to extend it into $n \times n$ matrix form. The other is to extend it into the case of many space variables.
2. $\boldsymbol{n} \times \boldsymbol{n}$ matrix form. Let $U(x, t)$ be a $n \times n$ Hermitian matrix function whose elements belong to $C^{\infty}\left(T^{1} \times R^{1}\right)$. Below, we denote the set of such matrix functions by $C^{\infty}\left(T^{1} \times R^{1}\right)$. Consider the eigenvalue problem for the following matrix differential equation with t considered as a parameter:

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} \Phi+U(x, t) \Phi=-\lambda \Phi, \quad-\infty<x, t<+\infty \tag{2.1}\\
\Phi(\cdot ; t) \in C^{2}\left(T^{1}\right) \quad \text { for all } t \in(-\infty, \infty)
\end{array}\right.
$$

There exists a complete system of normalized eigen-matrices $\left\{\Phi_{j}(x ; t)\right\}$ and eigenvalues $\left\{\lambda_{j}(t)\right\}, j=1,2, \cdots$, counted according to their multiplicity. Let $G(x, y, s ; t)$ be the Green matrix of the following problem of parabolic type:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial s} G=\frac{\partial^{2}}{\partial x^{2}} G+U(x, t) G \tag{2.2}\\
\lim _{s>0} G(x, y, s ; t)=\delta(x-y) I, \text { I being the identity matrix, } \\
G(\cdot, y, s ; t) \in C^{\infty}\left(T^{1}\right), \quad \text { for all } y, t \in(-\infty, \infty) \text { and all } s>0
\end{array}\right.
$$

We have

$$
\begin{equation*}
G(x, y, s ; t)=\sum_{j=1}^{\infty} e^{-\lambda_{j}(t) s} \Phi_{j}(x, t) \Phi_{j}^{*}(y ; t) \tag{2.3}
\end{equation*}
$$

where the asterisk indicates the conjugate transpose.
Theorem 1. The eigenvalues of (2.1) are constants as t varies if and only if the matrix function $U(x, t)$ satisfies

$$
\begin{equation*}
\int_{0}^{1} \operatorname{trace}\left(\frac{\partial}{\partial t} U(x, t) G(x, x, s ; t)\right) d x=0, \tag{2.4}
\end{equation*}
$$

$$
\text { for all } s>0 \text { and all } t \in(-\infty, \infty)
$$

Theorem 2. As $s \searrow 0$, we have the following asymptotic expansion:

$$
\begin{equation*}
G(x, x, s ; t) \sim \sum_{i=0}^{\infty} s^{i-1 / 2} P_{i}(x, t), \tag{2.5}
\end{equation*}
$$

where $P_{i}(x, t)$ are $n \times n$ matrices whose elements can be computed explicitly in terms of the elements of $U, \partial U / \partial x, \cdots$ and $\partial^{2(i-1)} U / \partial x^{2(i-1)}$.

Theorem 3. We have

$$
\begin{align*}
& \int_{0}^{1} \operatorname{trace}\left(\frac{\partial}{\partial x} P_{i}(x, t) \cdot G(x, x, s ; t)\right) d x=0 \tag{2.6}\\
& \quad \text { for all } t \in(-\infty, \infty) \text { and all } s>0 .
\end{align*}
$$

Combining Theorem 1 with Theorem 3, we obtain
Theorem 4. If $u(x, t)$ evolves according to the equation

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} U=\sum_{i=1}^{M} f_{i}(t) \frac{\partial}{\partial x} P_{i}\left(U, \cdots, \partial^{2(i-1)} U / \partial x^{2(i-1)}\right), \tag{2.7}\\
U(x, t) \in C^{\infty}\left(T^{1} \times R^{1}\right)
\end{array}\right.
$$

then, all eigenvalues of (2.1) are constant in t. Furthermore, the quantities

$$
\begin{equation*}
\int_{0}^{1} \operatorname{trace} P_{i}\left(U, \cdots, \partial^{2(i-1)} U / \partial x^{2(i-1)}\right) d x, \quad i=0,1,2, \cdots, \tag{2.8}
\end{equation*}
$$

are invariant integrals of the equation (2.7).
Example. In an analogous way as that in [1], we have

$$
\begin{equation*}
\frac{\partial}{\partial t} U+12 \sqrt{\pi} \frac{\partial}{\partial x} P_{2}=\frac{\partial}{\partial t} U+3 \frac{\partial}{\partial x}\left(U^{2}\right)+\frac{\partial^{3}}{\partial x^{3}} U=0, \tag{2.9}
\end{equation*}
$$

which is a matrix analogue of the Korteweg-de Vries equation. We consider the case when U is a 2×2 real symmetric matrix :
$U=\left(\begin{array}{ll}a & c \\ c & b\end{array}\right)$, where a, b and c are real functions. Then, the equation (2.9) is reduced to the system:

$$
\begin{align*}
& \frac{\partial}{\partial t} a+3 \frac{\partial}{\partial x}\left(a^{2}+c^{2}\right)+\frac{\partial^{3}}{\partial x^{3}} a=0 \tag{2.10}\\
& \frac{\partial}{\partial t} b+3 \frac{\partial}{\partial x}\left(b^{2}+c^{2}\right)+\frac{\partial^{3}}{\partial x^{3}} b=0 \\
& \frac{\partial}{\partial t} c+3 \frac{\partial}{\partial x}[(a+b) c]+\frac{\partial^{3}}{\partial x^{3}} c=0
\end{align*}
$$

If we choose

$$
a=b=-u^{2} \quad \text { and } \quad c=\frac{\partial}{\partial x} u
$$

where u is a real function, the equations (2.10) and (2.10') yield

$$
\begin{equation*}
u\left(\frac{\partial}{\partial t} u-6 u^{2} \frac{\partial}{\partial x} u+\frac{\partial^{3}}{\partial x^{3}} u\right)=0 \tag{2.11}
\end{equation*}
$$

and the equation (2.10") is

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{\partial}{\partial t} u-6 u^{2} \frac{\partial}{\partial x} u+\frac{\partial^{3}}{\partial x^{3}} u\right)=0 . \tag{2.12}
\end{equation*}
$$

Thus we have
Theorem 5. If $u(x, t)$ varies according to the modified Kortewegde Vries equation:

$$
\begin{equation*}
\frac{\partial}{\partial t} u-6 u^{2} \frac{\partial}{\partial x} u+\frac{\partial^{3}}{\partial x^{3}} u=0 \tag{2.13}
\end{equation*}
$$

with
(2.14)

$$
u(x, t) \in C^{\infty}\left(T^{1} \times R^{1}\right)
$$

then the eigenvalues of the problem:

$$
\begin{gather*}
\frac{d^{2}}{d x^{2}} \Phi+\left(\begin{array}{ll}
-u^{2} & \partial u / \partial x \\
\partial u / \partial x & -u^{2}
\end{array}\right) \Phi=-\lambda \Phi, \tag{2.15}\\
\Phi \in C^{2}\left(T^{1}\right)
\end{gather*}
$$

are constants in t.
3. Many space variable case. Let $u(x, t)$ be an infinitely differentiable real function defined on $T^{n} \times R^{1}$, where T^{n} denotes the n-torus. Let $\left\{\varphi_{j}(x ; t)\right\}$ and $\left\{\lambda_{j}(t)\right\}, j=1,2, \cdots$ be a complete system of normalized eigenfunctions and eigenvalues, respectively, of the Schrödinger eigenvalue problem in T^{n} with t considered as a parameter:

$$
\left\{\begin{array}{l}
\Delta \varphi_{j}(x ; t)+u(x, t) \varphi_{j}(x ; t)=-\lambda_{j}(t) \varphi_{j}(x ; t), \tag{3.1}\\
\varphi_{j}(\cdot, t) \in C^{2}\left(T^{n}\right) \quad \text { for } \forall t \in(-\infty, \infty) .
\end{array}\right.
$$

Let $G(x, y, s ; t)$ be the Green function of the following problem of parabolic type:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial s} G=\Delta G+u(x, t) G, \tag{3.2}\\
\lim _{s>0} G(x, y, s ; t)=\delta(x-y), \\
G(\cdot, y, s ; t) \in C^{2}\left(T^{n}\right) \quad \text { for } \forall y \in R^{n}, \forall s>0 \text { and } \forall t \in(-\infty, \infty) .
\end{array}\right.
$$

Then, we have

$$
G(x, y, s ; t)=\sum_{j=1}^{\infty} e^{-\lambda_{j}(t) s} \varphi_{j}(x, t) \varphi_{j}(y, t)
$$

Theorem 1. The eigenvalues $\lambda_{j}(t)$ of (3.1) are constants in t if and only if $u(x, t)$ satisfies

$$
\begin{equation*}
\int_{0}^{1} \cdots \int_{0}^{1} \frac{\partial}{\partial t} u(x, t) G(x, x, s, t) d x=0 . \tag{3.3}
\end{equation*}
$$

Theorem 2. As $s \searrow 0$, we have the asymptotic expansion:

$$
\begin{equation*}
G(x, x, s, t) \sim \sum_{i=0}^{\infty} s^{i-n / 2} P_{i}(x, t) \tag{3.4}
\end{equation*}
$$

where P_{i} can be calculated in terms of u and their partial derivatives with respect to x, of order $\leqq 2(i-1)$.

Theorem 3. We have

$$
\begin{equation*}
\int_{0}^{1} \cdots \int_{0}^{1}\left(b(t) \cdot \nabla P_{i}(x, t)\right) G(x, x, s, t) d x=0, \quad i=1,2, \cdots, \tag{3.5}
\end{equation*}
$$

where $\boldsymbol{b}(t)=\left(b_{1}(t), \cdots, b_{n}(t)\right)$ is an arbitrary real vector function and $\nabla=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right)$.

Theorem 4. If $u(x, t)$ evolves according to the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u=\sum_{i=1}^{M} f_{i}(t) \boldsymbol{b}(t) \cdot \nabla P_{i}, \quad u \in C^{\infty}\left(T^{n} \times R^{1}\right) \tag{3.6}
\end{equation*}
$$

where M is an arbitrary positive number and $f_{i}(t)$ are arbitrary smooth functions, then the eigenvalues of (3.1) are constants as t varies. Furtheremore, every P_{i} appeared in (3.4) is the conserved density of (3.6).

Example. We obtain

$$
\begin{align*}
\frac{\partial u}{\partial t} & +12 \sqrt{\pi} \boldsymbol{b}(t) \cdot \nabla P_{2} \\
& =\frac{\partial u}{\partial t}+\sum_{k=1}^{n} b_{k}(t)\left(6 u \frac{\partial u}{\partial x_{k}}+\Delta \frac{\partial u}{\partial x_{k}}\right)=0 . \tag{3.7}
\end{align*}
$$

Theorem 5. If $u(x, t)$ evolves according to the equation (3.7) with $u(x, t) \in C^{\infty}\left(T^{n} \times R^{1}\right)$, then all eigenvalues of (3.1) are independent of t. Furthermore, all P_{i} are conserved densities of (3.7).

Detailed proofs and further investigations will appear elsewhere.

Reference

[1] Tsutsumi, M.: On the Korteweg-de Vries equation. Proc. Japan Acad., 51, 399-401 (1975).

