111. On the σ -Socle of a Module

By Hisao Katayama

Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1975)

Let R be a ring with identity and let σ be a left exact radical on R-mod such that $T(\sigma)$ is a TTF class. The purpose of this paper is to show that, for any module M, the sum of all σ -simple submodules of M coincides with the intersection of all σ -essential submodules of M. In case $\sigma=1$, i.e., $T(\sigma)=R$ -mod, the above result means the so-called Sandomierski-Kasch's characterization of the socle of a module (see [1, p. 62]).

Let σ be a left exact preradical on the category *R*-mod of unital left *R*-modules. Then the class $T(\sigma) = \{M \mid \sigma(M) = M\}$ is closed under submodules, quotients and direct sums. The modules in $T(\sigma)$ are called σ -torsion. A submodule *L* of a module *M* with $M/L \in T(\sigma)$ is called σ -open in *M*. If *L* is both σ -open and essential in *M*, we say that *L* is σ -essential in *M*. The σ -socle of a module $M \neq 0$, denoted by σ -soc (*M*), is defined as the intersection of all σ -essential submodules of *M*. If M=0 we define $M=\sigma$ -soc (*M*). A module *S* is called σ -simple if for any σ -open submodule *A* of *S*, either A=S or A=0.

Lemma. If S is a σ -simple submodule of M, then $S \subseteq \sigma$ -soc (M).

Proof. We may assume $S \neq 0$. If L is a σ -essential submodule of $M, S \cap L \neq 0$ and $S \cap L$ is σ -open in S, since $S/(S \cap L) \cong (S+L)/L \subseteq M/L$ $\in T(\sigma)$. Thus $S \cap L = S$ and so $S \subseteq L$.

A module M is σ -semisimple if every σ -open submodule of M is a direct summand of M. From [2], we quote the following facts:

(A) A σ -torsion module is σ -semisimple if and only if it is semisimple.

(B) If M is σ -semisimple, and N is any submodule of M, then M/N is σ -semisimple.

Now we assume moreover that σ is a left exact radical such that $T(\sigma)$ is a TTF class, i.e., $T(\sigma)$ is closed additionally under extensions and direct products. In this case, the corresponding topology $\mathcal{F} = \{I \mid I \text{ is a left ideal with } R/I \in T(\sigma)\}$ has a smallest member U. U is idempotent and $T(\sigma) = \{M \mid UM = 0\}$.

Theorem. If σ is a left exact radical such that $T(\sigma)$ is a TTF class, then for any module M, σ -soc $(M) = \Sigma \{S \subseteq M | S \text{ is } \sigma\text{-simple}\}$. Moreover σ -soc (M) is a direct sum of σ -simple submodules.

Proof. We show only the last assertion holds, then the former

follows from Lemma. Put $N = \sigma \operatorname{-soc}(M)$, and take any σ -open submodule K in N. Let K' be a complement of K in M, then $K + K' = K \oplus K'$ is essential in M. By the definition of N, M/N can be embedded in a direct product of σ -torsion modules. Thus $M/N \in T(\sigma)$. Since we have the exact sequence $0 \rightarrow N/K \rightarrow M/K \rightarrow M/N \rightarrow 0$, $M/K \in T(\sigma)$ and so $M/(K+K') \in T(\sigma)$. Therefore K+K' is σ -essential in M, and so we obtain $N \subseteq K+K'$. By modularity

 $N = N \cap (K + K') = K \oplus (N \cap K').$

This shows that N is σ -semisimple. It is immediate that $UM \subseteq N$. Since $N/UM \subseteq M/UM \in T(\sigma)$, UM is σ -open in N. Thus $N = UM \oplus X$, where X is semisimple by using (A) and (B). It remains to show that UM is σ -simple. For any σ -open submodule C of UM, $UM = U(UM) \subseteq C$. Thus we have UM = C.

Remark. Note that the theorem is false if the assumption that $T(\sigma)$ is a TTF class is dropped. Let K be a field and $R = \prod_{\alpha \in A} K_{\alpha}$ where $K_{\alpha} = K$ for all $\alpha \in A$ and A is a fixed infinite indexed set. Define a left exact radical σ on R-mod by the corresponding topology $\mathcal{F} = \{\prod_{\beta \in \Gamma} K_{\beta} | \Gamma$ is a subset of A with finite complement}. Rubin [2] showed that σ -soc (R) = R. Now we show that any σ -simple ideal A $(\neq 0)$ of R is of the form K_{α} . For some α , $K_{\alpha} \subseteq A$ and so we may write $A = K_{\alpha} \oplus B$, where $B \subseteq \prod_{\beta \neq \alpha} K_{\beta}$. Since $A/B \cong K_{\alpha} \in T(\sigma)$, B is σ -open in A. Thus B = 0 as desired. Therefore the sum of all σ -simple ideals in R is $\bigoplus_{\alpha \in A} K_{\alpha} \neq R$.

References

- [1] J. Lambek: Lectures on Rings and Modules. Blaisdell (1966).
- [2] R. A. Rubin: Semi-simplicity relative to kernel functors. Canad. J. Math., 26, 1405-1411 (1974).