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1 The process treated here is a model of the population growth
in a biological system in which each object gives births at various
times of its life length and new born objects behave as their parents
independently of others. The process is specified by two nonnegative
continuous functions on [0, ) (),/() and a probability generating
function h(s)

__
hs,
_

h 1, h >= 0 (n= 1, 2, ...) a living
object of age x gives births to ] objects before it reaches age x+dx
without dying itself wi$h a probability h2(x)dx and dies before age
x/ dx with a probability (x)dx where these probabilities are independ-
ent of each other and of past history. This process appeared in [2] as
a special case of general age dependent branching processes and was
called a Poisson branching process. In this paper limit theorems will
be given for probability generating functions of the population size at
time of Poisson branching processes. Limit theorems of such type
are studied by Ryan [5] for subcritical general age dependent branch-
ing processes. His results contain a part of ours as a special case.
The forms and proofs of theorems given here are simpler than Ryan’s
and almost parallel with ones of age dependent branching processes
given in [1].

2. Let Z(t) be the population size at time t of a Poisson branching
process specified by a(x), p(x) and h(s) as in the first section and let
F(s, ) be its generating function; F(s, t)=E[sZ], 0__<s_<_l. We always
assume that the process starts with a single object of age 0. Let L be
the time when the initial object dies and G(t) be the distribution func-

tion of L; G(t)= I:Z(u)exp(-I:Z(r)dr)du. By conditioning on L we
get

F(s, t)=s(1--G(t))E[exp {: log F(s, t--u)dN(u)} L>]
+: E[exp {:log F(s, t-v)dN(v))lL=u]dG(u),

in which we denote by N(t) the number of direct children of the initial
particle that have been ever born untill time t. Then we have

F(s, t)=s(1-G(t)) exp {: (h(F(s, --u))--1)(u)du}
(1)

+: exp (: (h(F(s, t--v))-1)a(v)dv}dG(u).
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When m--h’(1-)oo, F(s, ) is continuous in t e [0, oo) for each
s e [0, 1] and is the unique solution of (1) with 0<__F<=I (see [3] for the
proof).

From now on we assume m--h’(1--) oo.

Put g(s)=_.I; exp (: (u)du(h(s)--1))dG(t)-_ and let q be the smallest

root in [0, 1] of g(s)--s. Then q is the extinction probability for Z(0;
q-=limF(O,$) ([3]), and q=l is equivalent to g’(1)<l and g(1)=l.
We call our process subcritical if g’(1) 1 and g(1)= 1, critical if g’(1)
--g(1)--1 and supercritical if g’(1) 1 or g(1) 1.

Let M(0 denote E[Z(t)]-F’(1, t). From (1) it follows that

M(t) --m .Io M(t-u)(u)(1- G(u))du/ (1-- G(t)).

We can see that M(t) is bounded on each finite interval and the standard
renewal theorem deduces ([5], [3]) the following.

Lemma 1. Suppose there exists such that m.I[exp(--oct)(1
G(t))(t)dt 1 and .I, exp (- t) (1 G (t)) dt < c. Then i(t) a

(at) as t-.c where a=.[; exp .(-at)(1--G(t))dt(m.[; exp (-at)(1

--G(t))(t)tdt)-.
:. In this section we study the asymptotic behavior of F(s, t) as

t-.c or subcritical processes under the condition of Lemma 1. Let
a be a number in Lemma 1. Note that a is necessarily negative when
g(1) 1 and g’(1) 1.

Lemma 2. If g’(1)1, g(1)=1 and the condition of Lemma 1 is
satisfied, then supt>0,s0 exp (--at)(1--F(s, t))=_K

Before going into the proof of the lemma we state the main
theorem.

Theorem 1.

satisfied and
If g’(1)l, g(1)=l, the condition of Lemma 1 is

(2) | te-(t)(1-G(t))dt<
then limit inft (1--F(s, t)) exp (--at)>0 if] h(] log ])<c and

E[X log X] < c, where X--[: exp (--at)(t)dt. In this case limitt (1

--F(s, t)) exp (--at)--Q(s) exists and defines a positive analytic function
of s e [0, 1) with Q’(1-)< c.

Remark 1. We can see that h(] log ]) < c and E[X log X] < c
iff E[Y log Y] < c where Y=[[ exp (--at)tiN(t). Therefore, by the

inequality
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E[Y log Y] >-E[E[Y N(L)] log E[Y N(L)]]

>__: pk log k .[[ exp (-at)dLk(t)

where p--P[N(L)-- k] and L(t) k-lE[N(t) IN(L)-- k], the sufficiency
part o the theorem is reduced to the result of [5].

The next theorem is an immediate corollary of Theorem 1.
Theorem 2. Suppose that conditions of Theorem 1 is satisfied

and that E[X log X] and , h+(] log ]) are both finite where X is defined
in Theorem 1. Then lim++P[Z(t)--klZ(t)O]=b exist and (b}: is
a probability distribution with mean kbk--Q’(1-)(Q(O))-.

Now we prove Lemma 2. After simple calculations (1) is rewritten
as follows

(3) +my: (1--F(s, t-u))(u)(1-G(u))du

where

I(t)--(X--G(t)) exp (--f0 (1--h(F(s, t--u)))(u)du1,
(t)=(1--G(t))A( (i-- h(F(s, t--u)))(u)du),
3(t)=/i A ([(1--h(F(s, t--v)))(v)dv)dG(u),
’(t) =t0 {m(1--F(s, t--u))--(1--h(F(s, t--u)))}2(u)(1--G(u))du,

with A(x)=x-l+exp (--x). Let us write .(t)--exp(--at)(t) etc.

Put S(t)=l--E(s, t) and R.(t)=.[ m exp (-au)](u)(1-G(u))du. Then

S.(t)<=exp(--at)(1-G(t))+.I U.(t--u)dR.(u) since 2, 3 and 4 are all

non-negative. Lemma 2 now follows from the Renewal theorem ([4]).
For the proof of Theorem 1 we need the following lemmas.
Lemma 3. 2(t), 3(t) and (t) are all Riemann integrable.
Proof. Taking Laplace transforms, it follows from (3) that

/.(x)(1 o(x))=(x)-(x)-(x)-.(x)
where we set (x)=[exp (-- xt)l.(t)dt etc. Since (0+) c, by com-

pairing the signs of terms in both sides, we see that .(0+),
i 2, 3, 4.

The next lemma furnishes a key for the proof o Theorem 1.
Lemma 4. Let Y be a non-negative random variable with E[Y]

=1. Then for any $>0 f: E[A(uY)]u-du< c iff E[Y log Y]<

Corollary. Let f(s)==0 qs be a probability generating func-
tion with c=f’(1)<c. Then for 0</<1, [[c--u-(1--f(1--u))]u-ldu

J0
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c i] ,o q(i log i) c.

We omit the proof of these results (see [1] for a proof).
Proof of Theorem 1. Let lim inf (l--F(0, t)) exp (--at)0. We

first note that there exists a positive constant C such that for all t__> 0
(l--F(0, t)) Ce and 1- h(F(O, t)) Ce"t.

By Lemma 3, using the inequality A(x)x-1, xO,

.[: (t)dt

C f: (1-G(t))dt Ito e-"2(v)dv--I: e-"t(1-G(t))dt,

and then the hypothesis of the theorem implies

(4)

From (2) and (4) it ollows

(5)

We see similarly that

Since A(x)x, this inequality, combined with (5), leads to

I: e-’dt I:A (C I: e-’(v)dv)dG(u)
(-- )-CIE[A(uX)]u-du.

Consequently, by Lemma 4, we obtain E[X log X] since E[X] 1.
We deduce in a similar way, using Corollary instead of Lemma 4

and using integrability
To prove the converse part, we assume that E[X log X] and

h(] log ]). Since E[X log X] implies (4), we see that (t)
is directly Riemann integrable. , and are also directly Riemann
integrable" or example

sup +(t)
nt(n+l n-lu(n dn-1

and the sum of the right hand sides over n converges. The renewal
theorem therefore can be applied and then

lira e-"t(1-F(s, t))=

exists. We denote this limit by Q(s). Now we claim that

nm J:
If we prove this equation, since Q(s) is non-increasiag, we obtain that
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Q(s) 0, 0 =< s< 1 and the proof is completed.
For the proof of (6) it suffices to show that

lim 1 :, 1--s
((t)+(t)+"(t))dt=O"

If we take a convention such that F(s, t)= 1 for t 0, then (1--s)-(.(t)
+ .(t)) is written as

;: ; 1-- h(F(s, t--v)),(v)dv
1--s

X 1-- (: ) dG(u).

J (1-- h(F(s, t-- v)))(v)dv

From Lemma 1 and Lemma 2 it ollows that
((t) +.(t)) < const.e_.tE[A(mKe.tX)].

1--8
Since the right hand side of this inequality is integrable on [0, ) by
Lemma 4, the dominated convergence theorem is now applied to obtain

lim 1 (.(t))+ .(t))dt=O.
811 l--s

We can argue similarly to get that h(] log ])< oo implies

lim 1 I:(t)dt= O., 1 s
Thus the theorem is proved.

Remark 2. Evaluation (4) is not implied by conditions of Theorem
1, i.e. there exists a triple (t), g(t) and h(s) for which conditions of
Theorem 1 are satisfied but (4) fails to hold.

4. For the supercritical processes we get only an unsatisfactory
result.

Theorem 3. Let g’(1-)1. If there exists a number fl such that

1=..[; exp (-- flt)(t)(q--J(t))dt and .]: exp (-flt)(q-J(t))dt c, where

J(t)=.[oexp{(h(q)--l).[2(v)dv}dG(u) and .=h’(q), then (q--F(O,t))

exp (-fit) is bounded on [0, c).
For the proof the same method as in the proof of Lemma 2 is ap-

plied.
In order to demonstrate that a number fl defined in the above will

be proper one, we give a simple example. If we take 2(t)_=2,/(t)--/
where and p are positive constants, then our process is a Markov

branching process determined by the backward equation ---F(s, t)
3t

( / +. .s.h(s)-s) with =q--,q-u(F(s, t)), u(s)= + + +



No. 7 Poisson Branching Processes 515

which coincides with an usual parameter 0 determined by the equation

xp (-(+ +1-- u’(q)
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