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145. Eisenstein Integrals and Singular
Cauehy Problems

By Robert W. CARROLL
University of Illinois at Urbana-Champaign

(Comm. by K.Ssaku YOSIDA, M. $. A., Oct. 13, 1975)

1o The classical Euler-Poisson-Darboux (EPD) equations of
Weinstein (see e.g. [15]), and various formulas arising in their solution,
are known to possess group theoretic content, and various other analo-
gous classes of singular Cauchy problems also have been studied from
this point of view (cf. [4]-[6], [11]). We will discuss here some aspects
of the general situation in the context of harmonic analysis on sym-
metric spaces (cf. [7]-[10], [12]-[14] for notation). Thus let G be a real
connected noncompact semisimple Lie group with finite center and K
a maximal compact subgroup so that V--G/K is a symmetric space of
noncompact type. Let g~= k +p be a Cartan decomposition, ap a
maximal abelian subspace, and we will suppose that dim a=rank V 1.
Let G=KAN denote the related Iwasawa decomposition with com-
ponents g--k(g)exp H(g)n(g) and write g, or the standard root sub-
spaces in g~ (here we have positive roots c and possibly 2a). Set p=
(1/2) m for 20 where m,=dim g, and pick an element H0 e a with
a(H0)--1 while setting at--exp trio; for/ e Ra* we put (tHo)--lt and
then p=l/2m.+m,. We identify (0, c) with a Weyl chamber a/ a.
Let M (resp. M’) be the centralizer (resp. normalizer) of A =exp a in
K so that the Weyl group (of order w--2) is W M’/M and the boundary
of V is B----K/M.

Given now v--gK e V and b--kM e B one writes A(v, b)=--H(g-k)
and the Fourier transform of f e L(V) is defined by

(1.1) f(, b)= fv
or/ e a* and b e B. The inversion formula is

(1.2) f(v)=1 f f(/, b)e(-*"+p)a(’,b) [c(/)l-fd/db
W a*B

where c(/) is the standard Harish-Chandra function (and w =2). Now
a*/W=a*+ and one can write

(1.3) L(V) [ ,..q(, Iv(z) t-Zdlu
da*/W

for e LZ(B). The quasiregular representation of G on L(V), defined
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by L(g)f(v)-f(g-v), decomposes in the form L- | L c(/)
Ja*/W

where L acts in J( by the same rule as L with L irreducible and
unitary.

We recall here also the definition o the mean value o a function

f over the orbit o gv(h)--gu under the isotropy subgroup Iv--gKg-1

at v=z(g) (z" GG/K is the canonical map). Thus, noting that Mf
--Mf, one can write

(1.5) (if)(v)= f(gk(h))dk=F(u, v)

and the so called Darboux equation is DF--DF-----(M(Df))(v) where
D e D(G/K). The zonal spherical functions on G are defined by

(1.6) (g) f
J

for/ e a* and one can evidently write (g)--p(gK) where it is known
that _(g-9--(g). It is easy to show that the Fourier transform
M=_M e ’(V) is Ma=(h). We mention also that there are natural
polar coordinates in a dense submanifold of V arising from the decom-
position G=KA+K, A+ =exp a+, provided by the diffeomorphism (kM, a)
kaK" BA+V. Thus the polar coordinates of :(g)--u(kak)e V
are (kM, a). Further if h--]a with a e A + then (Mf)(v) =_ (Mf)(v)
=(Mf)(v).

2. The objects of interest in a generalized EPD theory are the
radial components of a basis for the spaces of (1.4), multiplied by
a suitable weight function. Now D(G/K) is generated by a single
Laplacian z/and we look at the radial component z/a of z/, passing this
rom the coordinate t in a e A to (A) in an obvious manner, and set-
ting Mt--M with Mt--((at), one has an eigenvalue equation
[4])

(2.1) [D+ (m. +m) coth tDt + m.. th
+ [/+ ((1/2)m+m.)], 0

where Dt=d/dt and th=tanh. The solution of (2.1), "nice" at t--0, is
(2.2) /(t,/): (exp tHo):F(, fl, ’-- sht)where (1/4)(m. + 2m. + 2i/), fl- (1/4)(m. + 2m.- 2i/), and
--(1/2)(m.+m.+ 1). The idea now is to embed/(t,/) in a "canonical"
sequence of "resolvants" /(t,/) (m could be a multi-index) such that
the resolvant initial conditions/(0,/)--1 and/(0,/)=0 are satisfied
while the associated singular differential equations or the / are
"split" by certain recursion relations as indicated below.

First we recall that a basis for L(B) can be taken in the orm o
functions kM><w[, (k)wi>, 1 <i< d(), where :(, V) (with
dim V---d(r)) runs over the set T of inequivalent irreducible unitary
representations of K such that dim V-- 1 (V V is the set of elements
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fixed by M). Here one knows dim V 1 or 0 and w is a basis vector
for V with {w.}, l<i<d(r), and orthonormal basis for V under a
scalar product (, }. These representations can be parameterized as
follows (see [9] for references). If m--0, T{(p, q)} q--0; if m=l,
T{(p,q)} with peZ+ and with (p,q)eZ+xZ where p+_qe2Z+ and
if m=3 or 7, T{(p, q)} with (p, q) e Z+ x Z/ where p + q e 2Z+. The
proof of the following theorem results from [9].

Theorem 1. The radial components of basis vectors in J(, can be
expressed through Eisenstein integrals in the form

(arK)= f e(-P)(71)(w, (k)wdk
JK

(2 3) --c-,thtch-tFtg+P+q" +p-q+l-m20
2 2

mO+m20+l
P + 2

the t

where g=i/ +p and c_,. is a constant. Setting d= --p(p +m
1) + q(q+ m..-- 1) and d..= --4q(q + m2.-- 1) the function

satisfies

(2.4) ftt + (m. + m..) coth tt +m. th tt
[d. sh-t+ d2. sh- 2t + p2 __/2]f 0.

3. We consider first the case m.=0 and m.=m. These situa-
tions involve the LobaSevskij spaces (e.g. G S00(8, 1) and K=SO(8)
with m 2) and the standard case of G SL(2, R) and K S0(2) with
m=l. Resolvants were found in [2]-[6], [11] by different methods
and expressed in terms of associated Legendre function or hypergeo-
metric functions of other arguments. The results can easily be put
into the present format as follows. We have p=m/2, g=i/+m/2,
d.=--p(p+m-1), and d.=0 while r(p, 0).

Theorem 2. Resolvants for the case m.=m and m.,=O are given
by

/v(t,/)= c:1. sh-v t_,..(atK)

=ch-,-F(g+P +p+l m+l th2t)(3.1) 2 2
p + 2

F(p +m/2 + 1/2)2v + /2-1/
shp+m/’-l/2 t

p--l:-il (ch t)i/ -1/2

These satisfy the resolvant initial conditions as well as the differential
equations and splitting recursion relations below.

(3.2)

(3.3)

(3.4)

/t + (2p +m)coth t+[p(p+m)+z2+()2]v=O
[sh t p(p + m) +/+/=

2p+m+ 1

/+ (2/) + m-- 1) coth t/- (2/) + m-- 1) csch t/-



694 R. Vr. CARROLL [Vol. 51,

The recursion relations can be found group theoretically by con-
sidering a full set of basis elements in the J(, spaces or simply by known
recursion formulas for the associated Legendre functions. Their com-
position, with suitable index changes, yields (3.2) and this is what we
mean by splitting (3.2). We remark in passing that resolvants are not
unique since if we multiply/ by a function e C such that (0)= 1,
’(0)--0, and 0=_1 for example then we would simply obtain different
equations (3.2)-(3.4) while the resolvant initial conditions are preserved
and for m=O there arises again the 0 of (2.2).

4. In the case when m2= 1 we take m=m so that d2=-4q and
md p(p + m) q2 with + 1. We choose resolvants again in the

form
P,(t, Z)= c:, sh-P $_,(atK)

(4.1) =ch--2 F(x+p+2 x+ P-q,2 y’ th2 t)
where =(1/2) i++1 =g/2 and 1. Using (2.4) one

obtains

i + [(2 +m+ 1) eoth t + th t],
(4.2) + (p+m+2)++ +1 +qseeht ,q=O.

Theorem 3. Resolvants for the case m=m and m=l are given
by (4.1) and satisfy (4.2) along with the resolvant initial condition.
There are arious splitting recursion relations according as p or q
change by 2 or (p, q) by ( 1, 1). We list these in the form

Y
--p--2x th tR,

p p--q --y)

(4.4)

(4.5)

sh t th tp+’q

/,q=2(y--1) coth t sech tp-2’q

+[2(l_ y) cotht+{2(x+(P+q)--X)(y-x2
y--2

,q--qthtfP,qq--2(xq- P+q)(xqy 2 2

P--q 1)2

y) sh tfp+l’q+l
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(4.6) .,q--qthtp,q-2(y-1)cothtip,q+2(y-1)cschtp-l,q-1

(4.7) f’q=--qth tP’q---(x+ P--q)(Y--x-- P+---q ) sh
2

(4.8) /t,q q th t,q-2(y--1)cotht1,q+2(y--1)cscht.-,q+
Pt’q-- q th tp’q

(4.9) + 2ctht(x+q/l P+q2’)(x P--q2
/,q- --q th t,q

q-1 2 2
The recursion relations are obtained using the ormula d/dzF(a,

b, c, z)--(ab /c)F(a/ 1, b / 1, c/ 1, z) and various contiguity relations or
hypergeometric functions. The cases m,--3 or 7 can be treated in a
similar manner. For the connection of the Fourier theory to the as-
sociated singular Cauchy problems see also [1]-[6], [11].
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