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P-spaces were introduced by K. Morita [2] (c. [3]) or an intrinsic
characterization of those normal (resp. paracompact) spaces X whose
product space X Y is normal (resp. paracompact) or each metric
space Y. That was a solution of a problem stated by H. Tamano [5].

In the present paper a characterization of P-spaces is given
(Theorem 1). Further it is pointed out that this characterization is
related to a topological game (Theorem 4). Finally, to each topological
space X a metric space P(X) is associated such that e.g. the paracom-
pactness o XP(X) implies the paracompactness of X Y for each
metric space Y (Theorem 8).

Definition ([3], p. 369). Let m be a cardinal number />1. A
topological space X is said to be a P(m)-space if for a set I of cardinality
m and or any family

{G(i, ..., i)" (i, ..., i) e I, n e N}
o open subsets of X such that G(i, ..., i)G(i, ..., i, i/) for each
(i, ..., Q, i/) e I/, n e N, there exists a family

{F(il, ...,in)" (i, in) e In, u e N}
of closed subsets of X satisfying the two conditions below"

(a) F(i, ..., Q)G(i, ..., i) or each (i, ..., i) e I, n e N, and

(b) [_) F(i, ..., in)=X for each (i, i, ...) e I such that [_) G(i,
n=l n=l

"",in)--X.
X is said to be a P-space if X is P(ra)-space or each cardinal m> 1.
Let (resp. (R)) denotes the family of all closed (resp. open) subsets

of a topological space X.
Theorem 1. X is a P-space iff there exists a function

F.U(R)-

1.1. if (G, ..., G) e (R), n e N, then F(G, ..., G)c U G, and

1.2. if (G, G2, ...) e (R) and U Gn--X, then U F(G1, ..., Gn)--X.
n=l n=l

Proof. () Let X be a P-space. We set I--(R) and G(G, ..., G)
G for each (G, ..., G) e (R), n e N. It is clear that G(G, ..., G)

such that



Suppl.] Characterization of P-Spaces 803

cG(G, ..., G=, G+I) for each (Gt, ..., G=, G=+) e G=+, n e N. Thus
there exists a family

{F(G, ...,G): (G, ...,G) e (R)=,neN}
of closed subsets of X so that the conditions (a)and (b)are satisfied.

Since G(G,..., G=)= L G, it follows that the function F"
k=l n=l

has the properties 1.1 and 1.2.

() Let F be a function from L_) (R) into such that 1.1 and 1.2
=1

are satisfied. Let I be any nonvoid index set and let

{G(i, ...,i): (i, ...,i=) eI",n e N}
be a family of open sets in X such that G(i,..., i,)cG(i,..., i,, i,+)
for each (i, ..., i,, i,+) e I+, n e N. We set

F(i, ..., i,) F(G(iJ, G(il, i), ..., G(i, ..., i,))
for each (i, ..., i,) e I, n e N. Then we have F(i, ..., i,) c G(i, ..., i,)

for each (i, ..., Q) e I, n e N. Let (i, i, ...) e I and let L_) G(i, ..., i,)
=1

----X. Then L_) F(il, ..., i,)- L_) F(G(il), G(i, i), ..., G(i, ..., i,))--X.
==1 =1

Hence X is a P-space.
Theorem 2 which follows is just another variant of Theorem 1.
Theorem 2. X is a P-space if/there exists a function F defined

on the family of all finite sequences GG2 G= of open sets in X
such that F(G1, ..., G=) e , F(GI, ..., Gn)c Gn and if (G, G2, ...) e

GncG=+I for each n e N and L_) Gn=X, then L_) F(G1, ..., G=)=X.
The function F for some of P-spaces can be easily defined and the

verifications of conditions 1.1 and 1.2 are not difficult. Here are some
examples.

Example 1. Let X be a countably compact space. Then we set

F(G, ..., G=)-X if L) G=X, and we set F(G1, ..., G)=g if L GX.
k=l k=l

Example 2. Let X be a a-compact space, i.e., let X= L_) C= where
=1

C, C, are compact subsets of X. We set F(G, ..., G,)-

Example 3. Let X be a perfectly normal space. Then for each
G e (R) there exists a sequence (P(G), P(G), ...) e r such that

G= F(G). We se P(G, ..., G)= /. P(G).
n=l /=I m=l

Example 4. Let (X, d) be a metric space. We set F(G, ..., G)-X
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i [.) G-X and we set F(G, ..., G)- x e X" d(x, y)>l/n for each

eX- G if t._) GX.
Theorem 3. Let m>. The X i P(m)-pee iff for

family (R) with card <_m there exists a function F" [.J -o such

that

:3.1. F(A, ...,A) A for eaeh (A, ...,A) , N
and

3.2. [.)F(A1, ...,An)=X for each (A1,A,...) e /N with [.JAn--X.
n=l =I

The proof of Theorem 3 is similar to the proof of Theorem 1 and
thus it is omitted.

Now we shall describe a game associated with P-spaces. Let X
be a topological space. Then F(X) denotes the following infinite posi-
tional game with perfect information. There are two players" the
first and the second one. The players choose alternatively consecutive
terms of a sequence of subsets of X so that each player knows X and
first k elements of that sequence when he is choosing the (k+ 1)-st
element.

A sequence (G, F, G, F, ...) of subsets of X is said to be a play
of F(X) i or each n e N we have

1 G e (R) and G is chosen by the first player, and

2 F e , F [.) G and F is choosen by the second player.

A play (G, F, G, F, ...) is a win of the first player if G=X
n=l

and Fn g=X. A play (G, F, G, F, .) is a win of the second player
n=l

if G=/=X or if Gn= [.J Fn--X. Clearly, each play is a win of
n=l n=l n=l

exactly one of the players.
The first player obliges the second one to choose F bounded by

J G. The second player wants to choose sufficiently big sets F,

because if F--X, then he wins. On the other hand the first player

tries to extend the set ) G to obtain a cover of X, because if J G :/:X,
=I n=l

then he loses the play.

A strategy of the first player is a function s" {} [J n_(R). A
n---1

strategy of the second player is a function t" (R)-. such that t(G,
n=l
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.., G=)c ) G for each (G1, ..., G=) e (R)=, n eN.

For each pair (s, t) of strategies there exists a unique play (G, F1,
G2, F,...) of F(X) defined as follows: Gt=s(O), F=t(G), G.=s(F1),
F2=t(G, G.), and so on.

A strategy s (resp. t) is said to be winning if the first player (resp.
the second player) using s (resp. t) wins every play of F(X).

According to Theorem 1 and the definition of strategies we have
the following game-theoretical characterization of P-spaces.

Theorem 4. X is a P-space iff the second player has a winning
strategy in F(X).

Let F(X, ) denote the following modification of F(X). The moves
of the first player are restricted to the choice of sets belonging to a
given family c (R).

Theorem 5. Let m>/o. Then X is a P(m)-space iff for each
family (R) with card <m the second player has a winning strategy
in F(X, ).

Theorem 5 is an easy consequence of Theorem 3.
Let us note that the paper [6] contains a sufficient condition for a

paracompact space X to get the paracompactness of the product space
X x Y with any paracompact space Y and the condition is nothing else
as the existence of a winning strategy in some topological game on X.

To each space X we assign a metric space P(X) defined as follows.

P(X)= (G1, G2, .) e (R)N. = Gn=X
The canonical base of P(X) consists of all sets B(U, ..., U=)={(G, G,
..)eP(X):G=U,...,G==U=}where(U,...,U=)e(R)=,neN. It is

well known that the canonical base is a-discrete, the sets B(U,..., U=)
are open and closed and natural distance in P(X) is defined by setting

d((U, U2,...), (V, V2,...))=0 if U== V= for each n e N and d((U, U2,
..), (V, V2, ...))=l/n if U:/=V for some k e N and n=min {k e N: U

=/= V}.
In the proof of Theorem 6 we shall need the following

Lemma. Let S be a normal, countably paracompact space. Then

for each a-locally finite open cover X of S there exists a locally finite
open cover of S such that {H:H e } refines .

Proof is obvious from [3, Lemma 1.5].
Theorem 6. If X x P(X) is normal and countably paracompact,

then X is a P-space.
Proof. Let X be a space such that the product space X X P(X) is

normal and countably paracompact. We shall point out that X admits
a function F described by Theorem 1. For (G, ..., G) e (R)=, n e N,
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set A(G1, Gn)-’-’((,.J G} xB(G1, ", Gn). Since
\ /

!--{B(G, ..., G)" (G, ..., G) e (R), n e N}
is a-discrete in P(X), it follows that the family

--{A(G, ., Gn)" (G, "", G) e (R), n e N}
is a-discrete in X P(X). It is easily seen that is an open cover of
XP(X). By Lemma there exists a locally finite open cover of
X P(X) such that {//" H e } refines . For each (G, ..., G) e (R),
heN and He we set

D(G, ..., G,H)-- ({G e (R)" GB(G, ..., G)H}.
Then we have D(G, ..., G,H)B(G, ..., G)I and H tJ{D(G,
.., G, H) B(G, ., G)" (G, ..., G) e (R), n e N}. Hence it follows

that
{D(G, ..., G, H) B(G, ..., G) (G, ..., Gn) e (R), n e N, H e

is a refinement of {//" H e } and it covers X P(X). Let n e N and
(G, ..., G) e (R). Then the family {D(G, ..., Gn, H)" H e } is locally
finite in X, because D(G, ..., G, H) B(G, ..., G) and {H" H e }
is locally finite in XP(X). Let He and set E(G1,...,G,H)

ID(G, ..., G,H)" m<_n, B(G,..., G)=B(G,..., G) and D(G,

.., G,H)__ G). It is easy to verify that the family {E(G,

..,G,H)’He} is locally finite in X. For each neN and (G,

.., G) e (R) we set F(G, ..., Gn)= U{E(G, ..., G,H)" H e }. The
set F(G, ., G) is closed in X, because it is the union of a locally finite
family of closed sets. It follows from the definition of F(G,..., G)

that F(G, ..., Gn) G. Thus it remains to prove the condition 1.2

of Theorem 1. Let (G, G, ...) e P(X). We claim that (.J F(G, ..., G)
=X. Let x e X. Then there exists H e such that (x, (G, G,...))
e H. Since refines /, there exists A(U,... U)e 7I such that H

A(U, ., Un). Since A(U, ., U)--(J U)B(U, ., U) and
\ /

(G, G, ...) e B(U, ..., U), we have U=G, ..., U--G. Hence H
A(G, G). Since
H U (D(V, ..., V,, H) B(V, ..., V) (V, ..., V) e (R), m e N},

it follows that there exists m e N and (V, ..., V) e (R) such that
(x, (G, G, ...)) e D(V, ..., V, H) B(V, ..., V). Now again (G, G,
..) e B(V, V) implies V-----G, ..., V G and therefore x e D(G,
.., G, H). Moreover B(G, ..., G)B(G, ..., G) and D(G,

., G, H) ) G. We distinguish two cases. Case 1" m<_n. Then

B(G, ..., G,)=B(G, ..., G) and hence x e D(G, ..., G, H)cE(G,
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..,G,H)F(G,...,G). Case 2" m>n. Then )GG and
k=l

hence x e D(G, ..., G, H)cE(G, ..., G, H)cF(G, ..., G). There-

fore O F(G, ..., G)=X.
Let us note that the proof of Theorem 6 is an adaptation of a con-

struction used by K. Morita [3], Lemma 4.5.
Theorem 7. X is a normal P-space iff the product space X P(X)

C is normal, where C denotes the Cantor Discontinuum.
Theorem 8. X is a paracompact P-space iff the space XP(X)

is paracompact.
The implications () of both preceding theorems were proved by

K. Morita [3]. Since the normality of XP(X) C implies the nor-
mality and the countable paracompactness of X P(X) (cf. [4], Theorem
1.3), the implications () of the theorems follow from Theorem 6.

References

[1 R. Engelking: Outline of General Topology. Amsterdam (1968).
[2 K. Morita: On the product of a normal space with a metric spaces. Proc.

Japan Acad., 39, 148-150 (1963).
3 ----: Products of normal spaces with metric spaces. Math. Annalen, 154,

365-382 (1964).
4] --: Note on paracompactness. Proc. Japan Acad., 37, 1-3 (1961).
5 H. Tamano: On compactifications. J. Math. Kyoto Univ., 1, 162-193 (1962).
6 R. Telgrsky: Spaces defined by topological games. Fund. Math., 88, 15-45

(1975).


