47. An Alternate Proof of a Transfer Theorem without using Transfer

By Tomoyuki Yoshida
(Comm. by Kenjiro Shoda, M. J. A., April 12, 1976)

In the paper [1] by the same author, he proved
Theorem A. If a Sylow p-subgroup P of a finite group G has no quotient group isomorphic to the wreath product $Z_{p} \backslash Z_{p}$, where Z_{p} is the cyclic group of order p, then $P \cap G^{\prime}=P \cap N_{G}(P)^{\prime}$.

The purpose of this paper is to give a primitive proof of a particular case of this theorem. Namely, we shall prove

Theorem B. If a Sylow 2-subgroup P of a finite group G has no quotient group isomorphic to the dihedral group D_{8} of order 8 , then $P \cap G^{2} G^{\prime}=P \cap N^{2} N^{\prime}$, where $N=N_{G}(P)$. In particular, if G has no subgroup of index 2, then so does N.

Most of the notation is standard. Let G be a finite group. Then G^{\prime} denotes the commutator group of G. For $X \subseteq G,\langle X\rangle$ is the subgroup generated by X. We set $G^{2} G^{\prime}=\left\langle g^{2}, G^{\prime} \mid g \in G\right\rangle$. We write $H \triangleleft G$ if H is a normal subgroup of G. For subgroups H, K of G, the notation $K \backslash H$ denotes the set $\{K h \mid h \in H\}$. Clearly, every element of H induces a permutation on $K \backslash H$. We write $H<G$ if H is a proper subgroup of G.

The following lemma is essential to the proof of Theorem B.
Lemma. Let P be a 2-group, $K<S<P$ and $x \in P$. Assume the following:
(a) $|S: K|=2$;
(b) For any $u \in P,\left\langle x^{2}\right\rangle^{u} \cap S \subseteq K$;
(c) The element x acts on the set $K \backslash P$ as an odd permutation. Then P has a quotient group isomorphic to D_{8}.

Proof. We shall argue by induction on $|P: S|$. Let R be a subgroup of P such that $|R: S|=2$. Suppose $K \triangleleft R$. Since x acts on $K \backslash P$ as an odd permutation, we have that there is $u \in P$ such that x acts as an odd permutation on the set $K \backslash R u\langle x\rangle$. Replacing x with $u x u^{-1}$, we may assume that $u=1$. If x fixes an element of $K \backslash R\langle x\rangle$, then x acts trivially on $K \backslash R\langle x\rangle$, as $K \triangleleft R$, a contradiction. Thus x acts semiregularly on $K \backslash R\langle x\rangle$, and so the number of the $\langle x\rangle$-orbits of $K \backslash R\langle x\rangle$ is 1 or 3 . It follows easily from $K \triangleleft R$ that $K \backslash R\langle x\rangle=K \backslash K\langle x\rangle$. Thus $|\langle x\rangle \cap R:\langle x\rangle \cap K|=4$. This means that $x^{j} \in S-K$ for some even j. This contradicts the assumption of this lemma. Hence we proved
that K is not normal in R.
Let $r \in R-S$ and $N=K \cap K^{r}$. Then $N \triangleleft R$ and $R / N \cong D_{8}$ and S / N $\cong Z_{2}^{2}$. We may assume that $r^{2} \in N$. Let L be a maximal subgroup of R such that $N<L \neq S$ and $L / N \cong Z_{2}^{2}$. We shall first show $\left\langle x^{2}\right\rangle^{u} \cap R \leq L$. Let $y \in\left\langle x^{2}\right\rangle^{u} \cap R, u \in P$. Then $y^{2} \in\left\langle x^{2}\right\rangle^{u} \cap S \leq K$ by the assumption of this lemma. Since $y^{r} \in\left\langle x^{2}\right\rangle^{u r} \cap R$, we have similarly that $y^{2 r} \in\left\langle x^{2}\right\rangle^{u r}$ $\cap S \leq K$. Thus $y^{2} \in K \cap K^{r}=N$. If $y \in S$, then it follows from the assumption of this lemma that $y \in K \cap K^{r}=N \leq L$. If $y \notin S$, then $y \in L$, as $R / N \cong D_{8}$. Hence we have that $\left\langle x^{2}\right\rangle^{u} \cap R \leq L$ for any $u \in P$.

Next, we will show that x acts on the set $L \backslash P$ as an odd permutation. Since x acts on $K \backslash P$ as an odd permutation, it will suffice to show that for each $u \in P$, the following are equivalent:
(i) x acts as an odd permutation on $L \backslash R u\langle x\rangle$;
(ii) x acts as an odd permutation on $K \backslash R u\langle x\rangle$.

If necessarily replacing x with $u x u^{-1}$, we may assume that $u=1$. Let $k \in K-L$ and $s=[r, k] \in L \cap S-N$. Then $R=L+L k$.

Suppose $R x \neq R$. If $L x^{j}=L k$ for some j, then $R x^{j}=R$, and so $x^{j} \in R$. As $x \notin R, j$ is even. Thus $x^{j} \in L$ and so $L x^{j}=L \neq L k$, a contradiction. Hence $L\langle x\rangle \neq L k\langle x\rangle$. In particular, x is represented on $L \backslash R\langle x\rangle$ as the product of two nontrivial cyclic permutation, and hence x acts on $L \backslash R\langle x\rangle$ as an even permutation. If $K x^{j}=K s$ for some j, then $R x^{j}=R$, so j is even. Thus $x^{j} \in K$ by the assumption of this lemma, a contradiction. Thus $K\langle x\rangle \neq K s\langle x\rangle$. Since $r K=K r s$, we conclude that x acts an even permutation on $K \backslash R\langle x\rangle$. Thus in this case, neither (i) nor (ii) holds.

Suppose next $R x=R$. Then $x \in R$. Since $x^{2} \in S \triangleleft R$, we have that $x^{2} \in N$ by the assumption of this lemma, and so $x \in S \cup L$. Thus (i) is equivalent to
(i)

$$
x \in L-S=N\langle s\rangle k
$$

If $x \in N k$, then $x: K \rightarrow K, K s \rightarrow K s, K r \leftrightarrow K r s$. If $x \in N s k$, then $x: K$ $\leftrightarrow K s, K r \rightarrow K r, K r s \rightarrow K r s$. Thus if (i) holds, then (ii) also holds. Assume conversely that (ii) holds. Then $x \notin N$ and x fixes an element of $K \backslash R$, and so $x \in K \cup K^{r}-N=N\langle s\rangle k$. Hence (i)' and also (i) hold. We proved that (i) and (ii) are equivalent in this case.

We can now prove this lemma. We show that $\left\langle x^{2}\right\rangle^{u} \cap R \leq L$ for any $u \in P$ and that x acts on the set $L \backslash P$ as an odd permutation. So if $R \neq P$, then we can apply induction and hence P has a quotient group isomorphic to D_{8}. If $R=P$, then we already proved that $R / N=P / N$ $\cong D_{8}$. The lemma is proved.

Proof of Theorem B. Let G, P, N be as in the theorem. Suppose the theorem is false. Then $P \cap G^{2} G^{\prime} \neq P \cap N^{2} N^{\prime}$. Take an element x of $P \cap G^{2} G^{\prime}-N^{2} N^{\prime}$ of minimal order. There is a subgroup M of
$N=N_{G}(P)$ of index 2 such that $x \notin M$. As $x \in G^{2} G^{\prime}$, the element x acts on the set $M \backslash G$ as an even permutation. Since $x: M \leftrightarrow M x=N-M$, there is $g \in G-N$ such that x acts on $M \backslash N g P$ as an odd permutation. As $M \triangleleft N$, we see that the permutation representations ($P, M \backslash M g P$) and ($P, M \backslash M x g P$) are equivalent. Since x acts on $M \backslash N g P$ as an odd permutation, we have that $M g P=M x g P=N g P$. Set $S=P \cap N^{g}$ and $K=P \cap M^{g}$. As $M^{g} P=N^{g} P$, we have that $|S: K|=2$. As $g \notin N=N_{G}(P)$, $S<P$. If $u \in P$, then by the minimality of the order of x, we have that $\left\langle x^{2}\right\rangle^{u g-1} \cap P \leq M$, and so $\left\langle x^{2}\right\rangle^{u} \cap S \leq K$. Furthermore, the permutation repreaentations ($P, M \backslash M g P$) and ($P, K \backslash P$) are equivalent, so x acts on $K \backslash P$ as an odd permutation. By Lemma 1, we have that P has a quotient group isomorphic to D_{8}, contrary to the assumption of the theorem about P. The theorem is proved.

Reference

[1] T. Yoshida: Character-theoretic transfers (to appear).

