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On Discontinuous Groups Acting on
a Real Hyperbolic Space. I

By Takeshi MOROKUMA

(Communicated by Kunihiko KODAIRA, M. ft. A., Sept. 13, 1976)

1. This note gives necessary and sufficient condition for a poly-
hedron in an n-dimensional real hyperbolic space to be a fundamental
domain of some discontinuous group which has been established by
B. Maskit [1] in 3-dimensional case. In 3-dimensional case our condition
improves his parabolicity one and is much more combinatorial (See
Definition 2). It also gives informations as to fixed point groups (See
Theorem 2) analogous to the case of Coxeter groups ([2] Chapter IV).

We fix our notations. Let H be the subspace {$ e RI+... +
) (n>2),<1} of Rn with the metric form ds=4= d/(1--=

which is called an n-dimensional real hyperbolic space. Let G be the
group of all isometries of H. Let F be an n-dimensional open poly-
hedron with totally geodesic faces in H satisfying the conditions" i) the
number of faces is finite, ii) F 3H is a finite set, where F means the
closure of F and H the boundary of H both under the topology of R.

Some concrete examples will be given in the part II.
2. We define two kinds of "fitness" for F as follows.
Definition 1. A discrete subgroup/ of G is said to be fit for F if

the following conditions are satisfied" i) [..Jrer rF=H where F means
the closure of F under the topology of H; for any element , in F which
is not the unit element we have F f .F 0 and the family of the subsets
{’F}rer in H is locally finite, ii)/ has no reflection and iii) the subset
{. e F IF ( .F=0} of F consists of finite elements.

Definition 2. Let be a subdivision of F and Z--{-x, ..., ’} be
a subset of G. A pair (,) is said to be fit for F if the following con-
ditions are satisfied"

i) (Structure of cell complex for F). consists of a finite num-
ber of polyhedra each of which, called facet, is open in its support,
namely the minimal subspace of H containing this facet. F is an ele-
ment of LP. For any F’ e , F’ is equal to the sum of F" e P such that
F,cF.

ii) (Compa$ibiliSy condition for and ). Let ’ be the set
of all F’ e such that F’ is v-dimensional (O<=v<__n). First -x con-
sists of even number of faces {H;, H, H, H} such that
and .,F f F=0 (1<i_<_ a). Secondly for any F’ e LP we have ,,F’ e
when ever F’cH. We say that a facet F’ is linked with F" by . if
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F’cH’ and F’---7F" where e means the signs + 1 and (H., 7) means
(H, 70 or (H?, y;) according as
and F’, both in , are equivalen$ i there exists a sequence o acets
F, ..,F such that =F, =F and that F is linked with Fy+ by

someaeU-(l]k). So F" is transformed to F’ by the product
.a...a_ e G which will be called ’gallery from F" to F". Let F’
----F, F, F’,(v, be all the elements in equivalent to F’ and --(r, ,
(Ijp(F’), lk,(F’,j) be all the elements in (- such that
H,(,,2,> D<;,,,> F. Choose galleries r;,, (I]z(F’)) from F to F’. Let
g,,, be the product r,,,--,>.,, where l(]) denotes the number such
that 7,’,..y=F(: g,,, is a gallery rom F’ to itself. The last con-
dition is that each g,,, (I]z(F’), lkr(F’, ])) fixes F’ pointwise
when F’ runs through representatives of under the equivalence
relation.

iii) (Unramifiedness condition for -). Let(-==-be the partition of - under the equivalence relation introduced
above. Then there exists a positive integer m corresponding to each
equivalence class- such that
1) AN=2z/m

where AN means the angle between the two (n--1)-dimensional acets
H, H: such that HH:N. Let (2- consist of N,..., N, such

(l<]<s) where we put N+ N. We takethat

77" "-’- s r,a (l<]s).= Then g,, is equal to g,=7:,. "r::, g or
the identity transformation. From the eondition ii), iii) the following
relation holds
2) " g=the identity

iv) (Parabolieity eondition for F 3H). The link and the equiv-

alence relation above also apply to the set FH replacing H by H
and F’ by c where c runs over the representatives of F 3H under the
equivalence relation. Then g (l]Z(c),lkr(e,])) are all para-
bolic.

3. Main theorems
Theorem 1. For any discrete subgroup F fit for F there exists a

pair (,) fit for F such that ()=F where () means a group
generated by in G. Conversely for any pair (,) fit for F the
group () is fit [or F.

Corollary. Let (,) be fit for F. F be the group (). Then
(rF’lr e F, F’ e }, eonsidered as a set of subset of H, gives a subdivi-
sion of H. a is loeally finite and has a structure of eell eomplex
naturally indueed from that of . The .representatives of under
the action of F are the representatives of under the equivalenee re-
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ation defined in Definition 2-ii). Let F’ e (_P. Then for any x e F’ the
isotropy subgroup F are the same which we denote by F,.

From now on or covenience we assume the empty 2acet belongs
to P and denote by F the whole group F.

Theorem 2. Let (,) be fit for F and F’ an element of or

F3H. Then , is generated by g,,, (I]z(F’), lk,(F’,]))
(ee Definition 2). Let S, be a suciently small sphere with centre
x e F’ and normal to the support of F’, or a small cuspidal sphere

F--{F} according as F’ e or F’ e F H so that r,,F S, gives a
"vertex figure" of r,,F at F’. When F’ is empty we mean by S, the
total space H. Then Fr, acts on S, whose fundamental domain is
given by ’ r,,FS,. By a suitable selection of ,,, we can
make this set and its interior both connected. The latter will be de-
noted by F, Then the set of those ’’,,) S, which are on theF’,j (" ,)
boundary of F, consists of an even number of geodesic polyhedra
with codimension 1 in S,, F’, H+ H, (l<i<a(F’)), such that
gr,,,H,,=H,, for some g,,, which we denote by yr,,. The set, of Y,, (lia(F’)) also generates F,. For each (- such that

NF for some N (-) and F equivalent to F’, we have a relation

of the following form
,,-r,," ,-r,," (r,,7r,,))=the identity,

determining the indices ], by the condition that F., is linked with

N, with N+, both by 7. This relation is reduced to (See Defini--- is equal totion 2-iii))in the total group F, and each term
one of ,, or simply the identity which can be neglected. Let , be
the set of all such relations ,, associated with F’. Then, defines
a system of fundamental relations in the generator , of the group

4. Proof. Using elementary combinatorial arguments the ex-
istence of a pair (,) fit for F turns out to be necessary for dis-
crete subgroup F of G to be fit for F. From the converse part of
Theorem 1, Theorem 2 immediately follows pplying a general result
of A. M. Macbeath [3] to the group F, acting on the simply connected
space S,. To prove the converse part of Theorem 1, we construct
space as follows. Let (,) be fit for F and F be the group
For each r e F we consider rF to be a topological space with the induced
topology of H and denote it by (r). Let 0 be er (r) (disjoint un-

ion). Pasting each (r) and each (rT) long the common face rH[

=r7H we get an identification spce . F acts on in a natural
manner and also we have an F- equivariant projection map from
into H. Then the problem is reduced to show that "H is
homeomorphism. This follows from the following Lemma using the



362 T. I0ROKUMA [Vol. 52,

fitness condition.
Lemma. Let X, Y be topological spaces and XY be a map

such that i) X is a Hausdorff arcwise connected space, ii) Y is a con-
necked me$ric space wih a distance function d and iii) there exists a
eal number doO satisfying the following condition: for any x e X
we can find an open neighbourhood O of x such that 10: O-V
((x), do) is a homeomorphism where 10 is $he restriction of on O
and V((x), do) means {y e Y Id(y, (x)) d0}. Also V((x), d) is con-
nected whenever Od<-do. Then + is a covering map from X onto
Y. In particular if Y is simply connected $hen XY is a homeo-
morphism.

The proof is easy.. Remark. By a slite modification of our ormulations the
condition ii) of Definition 1 can be removed. It is an open problem to
extend the result to any irreducible non-compact symmetric space.
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