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1. The simply connected Heisenberg group G of n-th order con-
gists of elements g(x,y,2) (¢,y e R",zc R) with multiplication law

9(a,b,0)-9x,y,2)=9(x+a,y+b,z+c+<{a, ¥>), where <a, y>=ﬁ; @Y.

In this paper we state a Paley-Wiener type theorem for the group
G by the same method as in [3]. Let N and A be the subgroups of ele-
ments n=g(0, b, ¢) and a=g(a, 0, 0), respectively. Then G=N-4 is a
semidirect product. On the set N of not necessarily unitary characters
of N co-adjoint action of A is defined by a* . y(n) =x(ana™), (@ € A,y € N).
Every irreducible unitary representation of infinite dimension is re-
alized up to equivalence in L*(R?, dx) cf. [1],[2]: for 10,
(1) Tip(9) =€ De’ 2+ 9(x +a), for g=g(a, b, 0),
which is induced from a unitary character y=(y,2) of N such that
x(9(0, b, ) =exp ({gt, b>+1c), (ue ¥ —1-R*,2e ¥/ —=1.R). Let C be the
space of functions ¢ on R" with finite seminorms || - ||; for any ¢ ¢ R*,
where

loli=([, exp <t lob-lo@ran)",  (el=(ao.

In the space (C,|| - ;) the formula (1) gives a representation 9,. Es-
pecially we have || T%- ¢, < C*(2, 9) |¢l2¢,0» (¢ € C), with constants C*(¢, 9)
and z*(t, 9) independent of ¢. From easy argument of the existence of
invariant bilinear forms follows

Proposition. (i) A continuous linear operator commuting with
all T% (g € G) is a scalar multiple of the identity. (ii) Representation
9D, extends to a unitary one if and only if so is y (cf. [4]).

2. Let Q,,,, be a compact set in G of the form

(9@, y,2); |2 S, Y|SBy 121758, §=1- - -m}.

We assign auxiliary functions to Q=@Q,,;,, *(t; Q) =t+28|Rei|, and
Cx(t, Q=exp [{B, |Rep>+7|Rea|+ 27|z (t; Q)] )]

Lemma. If the support of a function fe L*(G) is contained in the

compact set Q, the Fourier transform of f: T§=L f(9)T*dg, converges

strongly in C for every y e N and it holds

(2) T2, < C* 5 @ || flzall@llxee; 0 (t e R™).
The Plancherel formula takes the following form:
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1= [T s _sad,

(I lz-s ; Hilbert-Schmidt norm).

Let C(Q) be the space of C~-functions with support contained in
@ and B(Q) be the set of operator-valued functions T* of y having the
properties (1°) (2°) and (3°) mentioned below. $B(Q) becomes a Fréchet
space with the canonical topology cf. [3].

(1°) For any polynomials P, (k=1,2) of d/9x, and (u+Ax), there
exists a constant C(P,, P,) independent of t,y and ¢ such that

|P,-T#* P,-p||, <C(P,, PY)CHt; Q) ||¢|lxcrsqy  fOr every te R™.

(2°) Equivalence relation: T,-T*- T;'=T%"*, (a € A, T, ; transla-
tion by a).

Now let C. be the space of v € C whose distribution derivatives
P(3/0x) -+ all belong to C for any polynomial P. We take as its system
of seminorms ||v|;,»=I|P@/0x)V||;-

(3°) Weak analyticity: for any ¢ C and F € C..; the dual space
of C.., {F', P,-T*P,p> is an entire function of y € N=C"xC, for such P,
and P, as in (1°).

Paley-Wiener type theorem. Fourier transformation f— T%
is a topological isomorphism of C3(Q,.,,) onto B(Q, ).

3. We sgketch only the proof of surjectivity. As showed in [3], the

operator T* has an integral kernel H*(xz, a): T"go(m):j Hx(z, a)p(a) da
R™

(pe ). Huz,a)isa C~-function of a for fixed x and y and its support is
contained in {a; max. (|z;|—|a;], ) =|a,| =@ |+ oy =1 - -n}. Let y_u.00
be the indicator of a set {x; —a;=Zx;=(a);, t=1.--n}. We can show
for differential operator D,, D,-H*(0, a) =(T*-D} - y;_,,4,)(0), where D}

is the adjoint operator of (ﬁ a/ aai> -D,. By the property (1°) we can
i=1

extend T*- D} defined on C., to the whole space C. Puty=T*-D}-y_, a0

then v € C., and its support lies in {z; |2,|<2a;,t=1---n}. We estimate

v(0) as follows. First for every s=(s,) ¢ R*

vO=[ o [ (100w )@y @) da

—2ay t=1

=j° . jo 2 PN ﬁ @/0x;+8y) - (x) da.

—2ay

Schwarz’ inequality and application (1°) to [] (3/0%;+s;) -+ brings us
0 {] 1/2
VOISC@-Cxt; Q- lte-wasliwo( [+ [ errodw)”.

Since C(s) is a polynomial, we have for every ¢>0

[4(0)|<C,-exp[{B, |Reul)+ (y+<e, B>)| Rea|l, where C, is independent
of . Moreover, choosing suitable polynomials P, and P, we can also
show

|#?2°D5 - HY(0, )| S Cy,q,r,. €XD [{B, [Rep) + (1 +<e, BD) | Rell,
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for any p,, q,, 7, and >0 and constant C, ,,,,. is independent of y. This
shows the following function is the desired one:

J(@=rs(a,b,c)=2rx)~ """ I H (0, g)e~0+21dd,,
R2XR

(i=+/—1). Once surjectivity is proved, topological isomorphism easily
follows from Banach-Steinhauss theorem, cf. [3].

Added to Proposition. (iii) Suppose L is a continuous linear
operator in C and characters y, and y, are both in general position. If
it holds forall g e G, L-T#*=T%.L, then L=0 or y,=a*y, for some a c A
and L=const. T,.
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