22. On the Acyclicity of Free Cobar Constructions. II

Ву Казиніко Аомото

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1977)

Examle 1. Let M be a connected simplicial complex and x_0 be a base point of M. Let N be a maximal tree in M containing x_0 . We denote by $C_*(M/N) = \bigoplus_{p=0}^{\infty} C_p(M/N)$ the CW-complex with the only one vertex x_0 . Let G be the edge path group of M/N with the base point x_0 . The set of all reduced closed pathes in M/N with the base point x_0 forms a free group F. Let L be the two-sided ideal of Z[F], generated by the elements of the form

(1.1)
$$\delta_1 T \langle v_0, v_1, v_2 \rangle = \widetilde{T \langle v_0, v_1 \rangle} \cdot \widetilde{T \langle v_1, v_2 \rangle} - \widetilde{T \langle v_0, v_2 \rangle}$$

for any reduced 2-simplex T of $M/N: \langle v_0, v_1, v_2 \rangle \rightarrow M/N$, where $T \langle v_i, v_j \rangle \in F$. We define X^f as $Z[F] \otimes C_*(M/N)$. For a reduced *n*-simplex T regarded as an element of X_n^f or A_{n-1} the formulae for ∂_n^f or δ_{n-1} are given as follows respectively:

(1.2)
$$\begin{array}{l} \partial_n^j T \langle v_0, v_1, \cdots, v_n \rangle = T \langle v_0, v_1 \rangle \cdot T \langle v_1, \cdots, v_n \rangle \\ + \sum_{i=1}^n (-1)^i \cdot T \langle v_0, v_1, \cdots, v_{i-1}, v_{i+1}, \cdots, v_n \rangle, \quad n \ge 2 \quad \text{and} \\ \partial_1^j T \langle v_0, v_1 \rangle = \widetilde{T \langle v_0, v_1 \rangle} - 1 \in \mathbb{Z}[F]^+, \quad n = 1, \end{array}$$

where $\widetilde{T \langle v_0, v_1 \rangle}$ lies in *F*, and

(1.3)

$$\begin{aligned} \delta_{n-1} T \langle v_0, v_1, \dots, v_n \rangle &= T \langle v_0, v_1 \rangle \cdot T \langle v_1, \dots, v_n \rangle \\ &+ \sum_{i=1}^{n-1} (-1)^i \cdot T \langle v_0, v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n \rangle \\ &+ (-1)^n \cdot T \langle v_0, v_1, \dots, v_{n-1} \rangle \cdot \widetilde{T} \langle v_{n-1}, v_n \rangle \\ &+ \sum_{i=2}^{n-2} (-1)^{i-1} \cdot T \langle v_0, v_1, \dots, v_i \rangle \cdot T \langle v_i, \dots, v_n \rangle, \quad n \geq 3. \end{aligned}$$

where $\widetilde{T\langle v_0, v_1 \rangle}$ and $\widetilde{T\langle v_{n-1}, v_n \rangle}$, $n \ge 3$, $\widetilde{T\langle v_0, v_1 \rangle}$, $\widetilde{T\langle v_1, v_2 \rangle}$ and $\widetilde{T\langle v_0, v_2 \rangle}$, n=2 are in F. The free cobar construction (A, δ) thus defined satisfies Assumptions 1 and 2 in [3]. This is nothing but a modification of Adams cobar construction. So by [3]

Theorem 1. $H_p(A) \cong (0), p \ge 1 \text{ and } H_0(A) \cong \mathbb{Z}[G] \text{ if and only if } M$ is a $K(\Pi, 1)$ space.

This is also related with Pfeiffer-Smith-Whitehead identity relations [4].

Example 2. Let \mathfrak{G} be a Lie algebra over Z and $\mathcal{E}(\mathfrak{G})$ or $T(\mathfrak{G})$ be its envelopping algebra or tensor algebra respectively. We consider the normalized standard complex (X, ∂) on $\mathcal{E}(\mathfrak{G}), X = \mathcal{E}(\mathfrak{G}) \otimes \Lambda^* \mathfrak{G}$, where $\Lambda^*(\mathfrak{G})$ denotes the exterior algebra of \mathfrak{G} . We put $X^j = T(\mathfrak{G}) \otimes \Lambda^* \mathfrak{G}$ and define for a $x_1 \wedge x_2 \wedge \cdots \wedge x_n \in X_n^j, x_j \in \mathfrak{G}, 1 \leq j \leq n$,

(2.1)
$$\begin{array}{l} \partial_n^j(x_1 \wedge x_2 \wedge \cdots \wedge x_n) \\ = \sum_{i=1}^n (-1)^i \cdot x_i \otimes (x_1 \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \wedge x_n) \\ + \sum_{1 \leq i < j \leq n} (-1)^{i+j} [x_i, x_j] \wedge x_1 \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \\ \wedge x_{j-1} \wedge x_{j+1} \cdots \wedge x_n. \end{array}$$

As an element of A_{n-1} we define

$$\delta_{n-1}(x_1 \wedge \cdots \wedge x_n) = \sum_{i=1}^n (-1)^i x_i \cdot (x_1 \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \wedge x_n) + \sum_{1 \leq i < j \leq n} (-1)^{i+j} ([x_i, x_j] \wedge x_1 \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \wedge x_n) + \sum_{\substack{j=2 \\ i_j \neq 1}} \sum_{\substack{i_1 < \cdots < i_i \\ i_j + 1 < \cdots < i_n}} (-1)^{j-1} \operatorname{sgn} \left(\frac{1 2 \cdots n}{i_1 i_2 \cdots i_n} \right) (x_{i_1} \wedge \cdots \wedge x_{i_p}) (x_{i_{p+1}} \wedge \cdots \wedge x_{i_n}) + \sum_{\substack{i_{j=1}}^n (-1)^i (x_1 \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \wedge x_n) \cdot x_i, n \geq 3}$$

and

$$\delta_1(x_1 \wedge x_2) = x_1 \cdot x_2 - x_2 \cdot x_1 - [x_1, x_2], \quad n = 2.$$

Then (A, δ) satisfies Assumptions 1 and 2 in [3]. Consequently

Theorem 2. $\operatorname{H}_{p}(A) \cong (0), p \ge 1 \text{ and } \operatorname{H}_{0}(A) \cong \mathcal{E}(\mathfrak{G}), p = 0.$

Example 3. Let M be the complement $P^n - S$ of the union of hyperplanes $S_j: f_j = 0$, $S = \bigcup_{j=1}^{m+1} S_j$ in the complex projective space P^n , where we put S_{m+1} to be the hyperplane at infinity. The holonomy Lie algebra $\mathfrak{S}(S)$ attached to the configuration S is defined to be the Lie algebra generated by the symbols x_1, x_2, \dots, x_m with the defining relations (see [1])

(3.1) $(\sum_{j=1}^{m} x_j \cdot df_j / f_j) \wedge (\sum_{j=1}^{m} x_j \cdot df_j / f_j) = 0.$

Let $\mathcal{D}^{\circ}(\mathbf{P}^n, \log S)$ be the space of logarithmic forms along S which is known to be generated by $\mathcal{D}^1(\mathbf{P}^n, \log S)$ (see for example [2] p. 292). Let X be $\operatorname{Hom}_{\mathcal{E}^{(\otimes)}}(\mathcal{E}(\mathfrak{G})\otimes \mathcal{D}^{\circ}(\mathbf{P}^n, \log S), \mathcal{E}(\mathfrak{G}))$, then X becomes a complex defined by

(3.2) $\partial \lambda(\varphi) = \lambda(\sum_{j=1}^{m} x_j (df_j/f_j) \wedge \varphi) = \sum_{j=1}^{m} x_j \cdot \lambda((df_j/f_j) \wedge \varphi)$

for $\lambda \in X$, $\varphi \in \mathcal{D}^{\cdot}(\mathbf{P}^n, \log S)$. Let $B(\mathcal{D}^{\cdot}(\mathbf{P}^n, \log S))$ be the reduced bar construction on $\mathcal{D}^{\cdot}(\mathbf{P}^n, \log S)$, i.e. the Chen complex consisting of iterated integrals of $\mathcal{D}^{\cdot}(\mathbf{P}^n, \log S)$. S being a graded Lie algebra, we have from [3]

Theorem 3. (X, ∂) is acyclic if and only if $H^p(\mathcal{B}(\mathcal{D}^{\bullet}(\mathbf{P}^n, \log S)))$ vanishes for $p \ge 1$. In this case $H^0(\mathcal{B}(\mathcal{D}^{\bullet}(\mathbf{P}^n, \log S)))$, the space of hyperlogarithmic functions, is isomorphic as graded algebra, to the dual of $\mathcal{E}(\mathfrak{S})$, the completion of $\mathcal{E}(\mathfrak{S})$ with respect to the augmentation ideal $\mathcal{E}(\mathfrak{S})^+$.

It is conjectured that the complex (X,∂) is acyclic if and only if *M* is a K(Π , 1) space. In particular let *S* consist of 5 lines $z_1=0, 1, z_2=0, 1$ and $z_1=z_2$ in the 2-dimensional complex affine space C^2 . Then C^2-S is K(Π , 1) and (X,∂) is acyclic. We take $\omega_{01}=dz_1/z_1, \omega_{02}=dz_2/z_2, \omega_{12}=d(z_1-z_2)/(z_1-z_2), \omega_{13}=dz_1/(z_1-1), \omega_{23}=dz_2/(z_2-1)$ and $\omega_{03}=0$, with

No. 2]

 $\omega_{ij} = \omega_{ji}$. Then the iterated integral

(3.3) $\Phi[ijk] = \int \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} - \omega_{jk}\omega_{ij} - \omega_{ki}\omega_{jk} - \omega_{ij}\omega_{ki}$

is closed in $B^{0}(\mathcal{D}(\mathbf{P}^{2}, \log S))$ which defines a bilogarithmic function.

The function $\sum_{\nu=1}^{4} (-1)^{\nu} \cdot \mathcal{O}[1 \cdot \overset{\nu}{\vee} \cdot 4]$ was used in the combinatorial formula for the 1st Pontrajagin class in [5].

References

- K. Aomoto: Sur la forme de connexion euclidienne du type régulier. Proc. Japan Acad., 46, 660-662 (1970).
- [2] ——: Les équations aux différences linéaires et les intégrales des fonctions multiformes. Jour. of The Fac. of Sci. Univ. of Tokyo, 22, 271–297 (1975).
- [3] —: On the acyclicity of free cobar constructions I. Proc. Japan Acad., 53A, 35-36 (1977).
- [4] W. T. Van Est: Pfeiffer-Smith-Whitehead non-commutative homology and cohomology (1977) (preprint).
- [5] A. M. Gabrielov, I. M. Gelfand, and M. V. Losik: Combinatorial calculation of characteristic classes. Funct. Anal. and Its Appli., 9, 5-26 (1975) (in Russian).