19. Tail Probabilities for Positive Random Variables Satisfying Some Moment Conditions

By Norio Kôno

Institute of Mathematics, Yoshida College, Kyoto University (Communicated by Kôsaku Yosida, M. J. A., May 12, 1977)

1. Let X be a positive random variable such that the asymptotic inequality

$$(c(1-\varepsilon))^{2n}\Gamma(2n+1)^{\beta} \leq E[X^{2n}] \leq (d(1+\varepsilon))^{2n}\Gamma(2n+1)^{\beta}$$

(n: integer)

holds for all ε , $0 < \varepsilon < 1$, where $0 < c \le d < +\infty$ and $0 < \beta < 1$. Then L. Davies [1] has proved the following inequalities as a corollary of his theorem:

$$eta d^{-1/eta} \leq \displaystyle \lim_{x o +\infty} -\log P(X \geq x)/x^{1/eta} \ \leq \displaystyle \overline{\displaystyle \lim_{x o \infty}} -\log P(X \geq x)/x^{1/eta} \ \leq eta d^{-1/eta}(r_n/r_1)^{1/eta},$$

where $0 < r_l \le 1 \le r_u < +\infty$ are the two positive roots of f(y)=0, $f(y)=\beta(c/d)^{1/\beta}y^{1/\beta}/(1-\beta)-y/(1-\beta)+1.$

We will extend his result to a class of positive random variables satisfying some moment conditions which includes his result. For this aim, we shall define "nearly regularly varying function with index α " which is first introduced in [2].

2. Let $\sigma(x)$ be a positive measurable function defined on $[c_0 + \infty)$, $(c_0 > 0)$. We say that $\sigma(x)$ is a "nearly regularly varying function with index α " if and only if there exist two positive constants $r_1 \ge r_2$ and a slowly varying function s(x) such that

$$r_2 x^{\alpha} s(x) \leq \alpha(x) \leq r_1 x^{\alpha} s(x).$$

In particular, we say that $\sigma(x)$ is a "nearly slowly varying function" if $\alpha=0$.

As is well known (for example see [3]) s(x) is represented as follows :

$$s(x) = b(x) \exp \int_{\cdot}^{x} a(t)/t dt,$$

where a(x) and b(x) are measurable functions such that

$$\lim_{x\to\infty} b(x) = b > 0 \quad \text{and} \quad \lim_{x\to\infty} a(x) = 0.$$

3. Theorem 1. Let X be a positive random variable. Assume that there exist two positive constants c_1 and h, and also a non-decreasing nearly regularly varying function $\sigma(x)$ with index α . $0 < \alpha < 1$, defined on $[1/h, +\infty)$ such that

No. 2]

$$E[X^{2n}] \le c_1^{2n} \prod_{k=1}^{2n} \sigma(k/h)$$

holds for any $n \ge n_0$. Then

$$P(X \ge A\sigma(x)) \le \exp\left\{-(\alpha - \delta(1/h))g(hx)\right\}$$

holds for any $x \ge 2n_0/h$, where

$$egin{aligned} b_1 &= \sup_{x \geq 1/\hbar} \, r_1 b(x), & b_2 &= \inf_{x \geq 1/\hbar} \, r_2 b(x), \ A &= c_1 b_1 / \, b_2, & \delta(x) &= \sup_{t \geq x} \, |a(t)| \end{aligned}$$

and

$$g(y) = y - (1/2) \log y - \log \sqrt{2\pi} - 2 - 0(1/y)$$

Theorem 2. In addition to the conditions of Theorem 1, we assume that there exists a constant $c_2(\leq c_1)$ such that

$$E[X^{2n}] \ge c_2^{2n} \prod_{k=1}^{2n} \sigma(k/h)$$

holds for any $n \ge n_0$. Then

$$\lim_{x \to \infty} \log P(X > A\sigma(x/h))/x \ge -\kappa(\alpha + \delta(1/h)) \qquad (\kappa > 0)$$

holds uniformly in $h \le 1$. In particular, we can choose $\kappa = 1$ if $c_1 = c_2$, and $b_1 = b_2$.

4. First we prove Theorem 1. By Chebyshev's inequality it follows that

$$P(X \ge A\sigma(x_n)) \le E[X^{2n}]/(A\sigma(x_n))^{2n}$$
$$\le b_2^{2n}\sigma(x_n)^{-2n} \prod_{k=1}^{2n} (k/h)^{\alpha} \bar{s}(k/h),$$

where

$$ar{s}(x)\!=\!\exp\int_{\cdot}^{x}a(t)/tdt$$
 and $x_n\!=\!2n/h,\ n\!\ge\!n_0.$

With elementary calculus by making use of Stirling's formula for n!, we have

$$\prod_{k=1}^{2n} \bar{s}(k/h) = \exp\left\{2n \int_{.}^{2n/h} a(t)/t dt - \sum_{k=1}^{2n-1} k \int_{k/h}^{(k+1)/h} a(t)/t dt\right\}$$

and

$$\sum_{k=1}^{2n-1} k \int_{k/h}^{(k+1)/h} |a(t)|/t dt \leq \delta(1/h) \sum_{k=1}^{2n-1} k \log (1+1/k) \\ = \delta(1/h)(2n - (1/2) \log 2n - \log \sqrt{2\pi} - 0(1/n)).$$

Again by Stirling's formula, we have

$$\begin{split} b_{2}^{2n} \sigma(x_{n})^{-2n} \prod_{k=1}^{2n} (k/h)^{\alpha} \bar{s}(k/h) \\ \leq & \exp \left\{ -(\alpha - \delta(1/h))(2n - (1/2) \log 2n - \log \sqrt{2\pi} - 0(1/n)) \right\}. \\ \text{Finally, it follows for } x_{n} < x < x_{n+1} \text{ that} \end{split}$$

$$P(X \ge A\sigma(x)) \le P(X \ge A\sigma(x_n))$$

$$\le \exp\left\{-(\alpha - \delta(1/h))(hx_n - (1/2)\log hx_n - \log \sqrt{2\pi} - 0(1/n)\right\}$$

$$= \exp\left\{-(\alpha - \delta(1/h))g(hx)\right\}.$$

Now we prove Theorem 2. Setting $F(x)=P(X \le x), B=(1+\varepsilon)A, m=[\kappa n] (\kappa > 1)$, and $p=[\mu m] (\mu > 0)$,

we have

$$P(X > A\sigma(x_n)) \ge \int_{A\sigma(x_n)+0}^{B\sigma(x_n)} dF(x)$$

$$\ge (B\sigma(x_n))^{-2m} \left(\int_0^{+\infty} - \int_0^{A\sigma(x_n)} - \int_{B\sigma(x_n)+0}^{+\infty} \right) x^{2m} dF(x).$$

Let us estimate each term.

$$\begin{split} \mathbf{I} &= \int_{0}^{\infty} x^{2m} dF(x) = E[X^{2m}] \\ &\geq (c_2b_2)^{2m} \exp\left\{ 2m\left(\alpha \log\left(2m/h\right) + \int_{\cdot}^{2m/h} a(t)/tdt\right) \right. \\ &- \alpha(2m - (1/2)\log\left(2m - \log\sqrt{2\pi} - 0(1/m)\right) - \sum_{k=1}^{2m-1} k \int_{k/h}^{(k+1)/h} a(t)/tdt \right\}, \\ \mathbf{II} &= \int_{0}^{4c(x_n)} x^{2m} dF(x) = \left(\int_{0}^{4s'(x_n_0)} + \int_{k=x_0+1}^{4s'(x_n)} x^{2m} dF(x) = \mathbf{II}_1 + \mathbf{II}_2, \\ \mathbf{II}_1 &\leq (A\sigma(x_{n_0}))^{2m}, \\ \mathbf{II}_2 &\leq (A\sigma(x_{n_0+1}))^{2m} (1 - F(A\sigma(x_{n_0}))) + \sum_{k=n_0+1}^{n-1} (A\sigma(x_{k+1}))^{2m} (1 - F(A\sigma(x_k))) \\ &= \mathbf{II}_{2,1} + \mathbf{II}_{2,2}, \\ \mathbf{II}_{2,1} &\leq (Ab_1)^{2m} \exp\left\{ 2m\left(\alpha \log\left(2n_0+2\right)/h + \int_{\cdot}^{(2n_0+2)/h} a(t)/tdt\right) \right. \\ &- \left(\alpha - \delta(1/h)\right) \left(2n_0 - \frac{1}{2}\log\left(2n_0 - \log\sqrt{2\pi} - O\left(\frac{1}{n_0}\right)\right)\right), \\ \mathbf{II}_{2,2} &\leq (A\sigma(x_n))^{2m} \exp\left\{ -\alpha\left(2n - 2 - \frac{1}{2}\log\left(2n - 2\right) - \log\sqrt{2\pi} - O\left(\frac{1}{n-1}\right)\right) \right. \\ &- \sum_{k=1}^{2n-3} k \int_{k/h}^{(k+1)/h} a(t)/tdt \right\} \sum_{k=n_0+1}^{n-1} (\sigma(x_{k+1})/\sigma(x_n))^{2m} \\ &\times \exp\left\{ \alpha\left(2n - 2k + 2 - \frac{1}{2}\log\left(n - 1\right)/k + O\left(\frac{1}{k}\right) - O\left(\frac{1}{n-1}\right)\right) \right. \\ &+ \sum_{j=k}^{2n-3} j \int_{j/h}^{(j+1)/h} a(t)/tdt \right\} \\ &\leq (A b_1)^{2m} \exp\left\{ 2m\left(\alpha \log\left(2n/h\right) + \int_{\cdot}^{2n/h} a(t)/tdt \right) \\ &- \alpha\left(2n - 2 - \frac{1}{2}\log\left(2n - 2\right) - \log\sqrt{2\pi} - O\left(\frac{1}{n-1}\right)\right) \right. \\ &- \sum_{j=1}^{2n-3} i \int_{j/h}^{(j+1)/h} a(t)/tdt \right\} \sum_{k=0}^{\infty} \exp\left\{ -\alpha\left(\log\left(2m + 2p\right)/h + \int_{\cdot}^{(2m+2p)/h} a(t)/tdt \right) \\ &- \alpha\left(2n - 2 - \frac{1}{2}\log\left(2m - 2\right) - \log\sqrt{2\pi} - O\left(\frac{1}{n-1}\right)\right) \right. \\ &+ \sum_{j=k}^{2n-3} i \int_{j/h}^{(j+1)/h} a(t)/tdt \right\} \sum_{k=0}^{\infty} \exp\left\{ -\alpha\left(\log\left(2m + 2p\right)/h + \int_{\cdot}^{(2m+2p)/h} a(t)/tdt \right) \right. \\ &+ 2p\left(\alpha\log\left(m + p\right)/n + \int_{x_n/h}^{(2m+2p)/h} a(t)/tdt \right) \\ &- \alpha\left(2m + 2p - \frac{1}{2}\log\left(2m + 2p\right) - \log\sqrt{2\pi} - O\left(\frac{1}{m+p}\right)\right) \right) \\ &- \sum_{k=1}^{2m+2p-1} k \int_{k/h}^{(k+1)/h} a(t)/tdt \right\}. \end{split}$$

Therefore, for suitably chosen κ and ε we have $\lim_{n \to +\infty} (II + III)/I = O$

uniformly in $h \leq 1$. This yields the proof of Theorem 2.

References

- Davies, L.: Tail probabilities for positive random variables with entire characteristic functions of very regular growth. Z. Angew. Math. Mech., 56(3), 334-336 (1976).
- [2] Kôno, N.: On the modulus of continuity of sample functions of Gaussian processes. J. Math. Kyoto Univ., 10(3), 493-536 (1970).
- [3] Seneta, E.: Regularly varying functions. Lecture Notes in Mathematics, Springer-Verlag, 508 (1976).