17. Cohomology of the Symmetric Space EI

By Kiminao Ishitoya

Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1977)

§ 0. Introduction. Among the compact 1-connected irreducible symmetric spaces of exceptional type, G, FI, EI, EII, EV, EVI, EVIII and EIX have 2-torsion. The cohomology of G, FI and EII are known [2], [4], [5]. In this paper we determine the cohomology of $EI = E_6/PSp(4)$.

Since *EI* is 1-connected and $\pi_2(EI) = \mathbb{Z}_2$, we have two fiberings

- (a) $\widetilde{E}I \xrightarrow{g} EI \xrightarrow{f} K(Z_2; 2),$
- (b) $E_6 \longrightarrow \widetilde{EI} \longrightarrow BSp(4)$.

On the other hand $EIV=E_6/F_4$, and the subgroups F_4 and PSp(4) of E_6 contain the subgroup $U=S^3 \cdot Sp(3)$ in common. Noticing that $F_4/U=FI$ and $PSp(4)/U=HP^3$, we have two more:

- (c) $HP^3 \xrightarrow{i} E_6/U \xrightarrow{p} EI$,
- (d) $FI \longrightarrow E_6/U \longrightarrow EIV$.

We calculate the Serre spectral sequence associated to these fiberings.

Throughout the paper we use the following notations (A being a ring):

 $A\{x_i\} = \bigoplus A \cdot x_i$ and $\Delta(x_i) = A\{m ; m \text{ is a simple monomial in } x_i\}.$

Then our results are

Theorem 1. $H^*(EI; Z_2) = Z_2[x_i; i=2,3,5,9,11,13,15,17,21,23]/I$, where $Sq^ix_{i+1} = x_{2i+1}$ (i=1,2,4,8), $Sq^jx_{j+7} = x_{2j+7}$ (j=4,8), $Sq^8x_{13} = x_{21}$ and I is the ideal generated by the following elements ($x_5' = x_5 + x_2x_3$): $x_2^3 + x_3^2$, $x_2^2x_i$ ($i \neq 2,13,21$), x_j^2 ($j \neq 2,3$), $x_5'x_9x_{17}$; $x_3x_{13} + x_5'x_{11}$, $x_5'x_{13}$, $x_9x_{13} + x_5'x_{17}$, $x_{17}x_{13}$, $x_3x_{21} + x_9x_{15}$, $x_5'x_{21} + x_9x_{17}$, x_9x_{21} , $x_{17}x_{21}$; $x_{17}x_{11} + x_5'x_{23}$, $x_5'x_{15} + x_3x_{17} + x_9x_{11}$, $x_{17}x_{15} + x_9x_{23}$, $x_{17}x_{23} + x_3x_5'x_9x_{23}$; $x_{11}x_{13}$, $x_{11}x_{15} + x_3x_{23}$, $x_{11}x_{21} + x_9x_{23}$, $x_{13}x_{15} + x_5'x_{23}$, $x_{15}x_{21}$, x_kx_{23} (k=11,13,15,21).

Theorem 2. (i) As a ring $H^*(EI)$ /Tors. $H^*(EI)$ is generated by $\{e_i, e'_j; i=8, 9, 17; j=16, 17, 25, 34\}$ and

$$H^*\!\left(\!E\!I\,;\,Z\!\!\left[rac{1}{2}
ight]\!
ight)\!=\!Z\!\!\left[rac{1}{2}
ight]\!\left[e_{8}
ight]\!/(e_{8}^{3})\!\otimes\!\varLambda(e_{9},e_{17}),$$

in which $e'_{16} = \frac{1}{4}e_8^2$, $e'_{17} = \frac{1}{2}e_8e_9$, $e'_{25} = \frac{1}{2}e_8e_{17}$ and $e'_{34} = \frac{1}{4}e_8e_9e_{17}$.

(ii) There exist torsion elements $\chi \in H^3(EI)$ of order 2 and $\omega_i \in H^i(EI)$ (i=5,11,15,23) of order 4, and

 $\begin{aligned} \text{Tors. } H^*(EI) \!=\! Z_2 \! \{ \chi, \chi \omega_5 \} \! \otimes \! \{ 1, \, e_9, \, \omega_{11}, \, \omega_{15}, \, e_{17}, \, \omega_{23}, \, e_9 \omega_{23} \} \\ + Z_2 \! \{ \chi^2, \chi^2 \omega_{15}, \chi^2 \omega_{23}, \chi e_9 \omega_{15}, \chi e_9 e_{17}; \, \omega_5 e_9, \, \omega_5 \omega_{11}, \, \omega_5 e_{17}, \, e_9 \omega_{15}, \, \omega_5 e_9 \omega_{23} \} \\ + Z_4 \! \{ \omega_5, \, \omega_{11}, \, \omega_{15}, \, \omega_5 \omega_{15}, \, \omega_{23}, \, \omega_5 \omega_{23}, \, e_9 \omega_{23}, \, \omega_{16} \omega_{23} \}. \end{aligned}$

I would like to thank Professors H. Toda and A. Kono for their many useful suggestions and encouragement.

§ 1. $H^*(\widetilde{EI}; \mathbb{Z}_2)$. Consider the Serre spectral sequence associated to the fibering (b). The cohomology of the base and the fiber are (respectively)

$$\begin{split} H^*(BSp(4)\,;\, \pmb{Z}_2) \!=\! \pmb{Z}_2[p_{\scriptscriptstyle 1},\, p_{\scriptscriptstyle 2},\, p_{\scriptscriptstyle 3},\, p_{\scriptscriptstyle 4}], \ \deg\, p_{\scriptscriptstyle 4} \!=\! 4i, \quad \text{and} \\ H^*(E_{\scriptscriptstyle 6}\,;\, \pmb{Z}_2) \!=\! \varDelta(x_{\scriptscriptstyle 3},\, x_{\scriptscriptstyle 5},\, x_{\scriptscriptstyle 6},\, x_{\scriptscriptstyle 9},\, x_{\scriptscriptstyle 15},\, x_{\scriptscriptstyle 17},\, x_{\scriptscriptstyle 23}), \ \deg\, x_i \!=\! i \end{split}$$
 where $Sq^ix_{i+1} \!=\! x_{\scriptscriptstyle 2i+1} \ (i\!=\!2,4,8), \ Sq^8x_{\scriptscriptstyle 15} \!=\! x_{\scriptscriptstyle 23}, \ x_3^2 \!=\! x_{\scriptscriptstyle 6} \ \text{and} \ x_7^2 \!=\! 0 \ (j\!\neq\!3).$

Lemma 1. In this spectral sequence x_i are transgressive:

 $\tau x_3 = p_1$, $\tau x_{15} = p_2^2$, $\tau x_{23} = p_3^2$ and trivial for the rest.

Proof. It is easy to see that they are transgressive and that $\tau x_3 = p_1$, $\tau x_j = 0$ (j=5, 6, 9, 17). τx_{15} and τx_{23} are obtained as follows.

Put $\tau x_{15} = ap_4 + bp_2^2$ ($a, b \in Z_2$). Applying first Sq^8 and then Sq^4 , we have $\tau x_{23} = ap_2p_4 + bp_3^2$ and $0 = \tau Sq^4x_{23} = ap_3p_4$. Suppose a = b = 1, then in $E_{28}^{*,*} p_3p_4 = 0$, which contradicts to $p_3p_4 = p_2^2p_3 \neq 0$.

Next suppose (a, b) = (0, 0) or (1, 0). Then the Poincaré series $P.S.(E_{\infty}^{*,*},t)$ has a pole of order >1. But $P.S.(E_{\infty}^{*,*},t) = P.S.(H^*(\widetilde{EI}; \mathbb{Z}_2),t)$ cannot have such a pole since there is a fibering $K(\mathbb{Z}_2,1) \to \widetilde{EI} \to EI$ with $P.S.(H^*(\mathbb{Z}_2;1,\mathbb{Z}_2),t) = 1/(1-t)$. Thus we have a=0 and b=1.

From the previous lemma

Corollary 1. $H^*(\widetilde{EI}; \mathbf{Z}_2) = \Lambda(x_5, x_6, x_8, x_9, x_{12}, x_{17}) \otimes \mathbf{Z}_2[x_{16}]$ where $Sq^1x_5 = x_6$, $Sq^4x_5 = x_9$, $Sq^8x_9 = x_{17}$, $Sq^4x_8 = x_{12}$, $Sq^8x_{12} = x_8x_{12}$.

§ 2. Fibering (a). According to Serre [7],

$$H^*(Z_2; 2, Z_2) = Z_2[u_i; i=2^m+1, m \ge 0], \qquad Sq^{i-1}u_i = u_{2i-1}.$$

Consider the spectral sequence associated to (a). We calculate d_r for $r \le 23$.

Lemma 2. (i) x_i ($i \neq 16$) and $x_{20} = x_8 x_{12}$ are transgressive: $\tau x_5 = u_2^3 + u_3^2$, $\tau x_{2i} = u_2^2 u_{2i-3}$, $\tau x_{2j-1} = u_j^2$ (i = 3, 4, 6, 10; j = 5, 9) (ii) $d_r x_{16} = 0$ (r < 5) and $d_5 x_{16} = (u_5 + \varepsilon u_2 u_3) \otimes x_{12}$ ($\varepsilon \in Z_2$).

Using these data $E_r^{*,*}$ is computed for $r \le 23$. We rewrite, for convenience, $u_3 \otimes x_i$ with v_{i+3} (i=8,12,20) and $u_2^2 \otimes x_j$ with v_{j+4} (j=9,17). They are permanent. Under these notations we see that up to degree $23 \ E_\infty^{*,*}$ is generated as a ring by u_i (i=2,3,5,9,17) and v_j (j=11,13,15,21,23). (The structure is omitted here.) This implies that there exist indecomposables $x_j \in H^j(EI; Z_2)$ (j=11,13,15,21,23), which together with f^*u_i (i=2,3,5,9,17) generate $H^*(EI; Z_2)$ up to degree 23.

§ 3. $H^*(E_6/S^3 \cdot Sp(3); A)$ for A=Z and Z_2 . Now consider the fibering (d). According to [1] and [5],

 $H^*(EIV) = \Lambda(z_9, z_{17}),$

 $H^*(FI) = Z[\chi, f_4, f_8, f_{12}]/(2\chi, f_4\chi, \chi^3, f_4^3 - 12f_4f_8 + 8f_{12}, f_4f_{12} - 3f_8^2, f_8^3 - f_{12}^2),$ $H^*(FI; Z_2) = Z_2[y_2, y_3, y_8, y_{12}]/(y_2^3 + y_3^2, y_2^2y_3, y_8^2 + y_2^2y_{12}, y_{12}^2 + y_2^2y_8y_{12}),$ where the mod 2 reduction of χ, f_4, f_8 and f_{12} are y_3, y_2^2, y_8 and y_{12} respectively. Note that the base space is 8-connected. It follows that j^* is surjective, and the spectral sequence collapses. Investigating the multiplicative structure we have

Proposition. $H^*(E_6/S^3 \cdot Sp(3); A) = H^*(FI; A) \otimes H^*(EIV; A)$, where $A = \mathbb{Z}$ or \mathbb{Z}_2 and in the latter case the isomorphism commutes with Sq^i .

Concerning E_6/U and the map $i: HP^3 \rightarrow E_6/U$, we need the following. For suitable choice of generator $s \in H^4(HP^3)$,

Lemma 3. $i*f_{4j}=4s^j$ (j=1,3) and $i*f_8=2s^2$.

Corollary 2.
$$H^*\!\left(\!E\!I; Z\!\!\left[\frac{1}{2}\right]\!\right) = \!Z\!\!\left[\frac{1}{2}\right]\![e_8]/(e_8^3) \otimes A(z_9, z_{17}),$$

where $p^*e_8 = f_4^2 - 8f_8$, $p^*z_9 = z_9$ and $p^*z_{17} = z_{17} \mod decomposables$.

§ 4. Proof of Theorem 1. In the spectral sequence associated to (c)

$$E_{2}^{*,*} = H^{*}(EI; A) \otimes H^{*}(HP^{3}; A) = \sum_{0 \le i < 4} H^{*}(EI; A) \otimes s^{i}.$$

In the sequel to the end we use the following abbreviations;

$$H^n = H^n(EI; A)$$
 and $E_r^n = \sum_{p+q=n} E_r^{p,q}$.

(The coefficient ring A will often be omitted.)

Lemma 4. (i) There exist unique elements $x_i \in H^i$ (i=11, 13) such that $p^*x_{11} = y_3y_8$, $Sq^1x_{11} = x_3x_9$ and $p^*x_{13} = y_2^2z_9$.

(ii) Define $x_{15}=Sq^4x_{11}$, $x_{23}=Sq^8x_{15}$ and $x_{21}=Sq^8x_{13}$. Then they are indecomposable, and hence generate H^* together with x_i (i=2,3,5,9,17) up to degree 23.

Proof. Since Ker $p^* \cap H^5 = \mathbb{Z}_2\{x_5 + x_2x_3\}$, we have $\tau s = x_5 + x_2x_3$, and applying Sq^4 , $\tau(s^2) = x_9$. Then it follows that $E_\infty^8 = \mathbb{Z}_2\{x_3x_5\} + \mathbb{Z}_2\{x_2^2\}$ $\otimes s$ and $E_\infty^9 = \mathbb{Z}_2\{x_5 + x_2x_3\} \otimes s$. Since $p^*(x_3x_5) = y_2^4$, y_8 represents $x_2^2 \otimes s \in E_\infty^{4,4}$ while y_3 does $x_3 \otimes 1$. But $(x_3 \otimes 1)(x_2^2 \otimes s) = x_2^2x_3 \otimes s = 0$, which implies that y_3y_8 is of lower filtration degree. Consequently y_3y_8 is a p^* -image. Likewise we see that $y_2^2z_9$ is also a p^* -image. Then the rest of the assertion follows easily.

Next note that dim EI=42 and that the bilinear form $H^n \times H^{42-n} \to H^{42}=\mathbb{Z}_2$ induced by cup-product is non-degenerate. Using it we obtain the fundamental class $\in H^{42}$, and then additive bases for H^n for all n. More precisely

Lemma 5. Let $N = \{3, 5, 9, 17\}$ and $N' = \{5, 9, 17\}$, then we have $H^*(EI; \mathbf{Z}_2) = \mathbf{Z}_2[x_2, x_3, x_5, x_9, x_{17}]/(x_2^3 + x_3^2, x_2^2x_i, x_j^2, (x_2x_3 + x_5)x_9x_{17};$ $i \in N, j \in N')$ $+ (\Lambda(x_2, x_3, x_5) + \Lambda(x_2, x_3) \cdot x_9) \otimes x_{11} + \Lambda(x_2, x_3, x_9) \otimes x_{15}$ $+ \Lambda(x_2, x_3, x_5, x_9) \otimes x_{23} + \mathbf{Z}_3[1, x_2, x_2^2] \otimes \mathbf{Z}_2[x_{13}, x_{21}, x_{13}x_{21}].$

By use of the Sq^i and the Adem relations we obtain all the relations necessary to rewrite monomials which cannot appear in the previous lemma (e.g. x_ix_k ($i \in N$ and k=13,21), $x_{11}x_{13}$, $x_{11}x_{15}$, etc.) and Theorem 1 is obtained.

§ 5. Proof of Theorem 2. Consider the spectral sequence associated to (c) with integral coefficients. It is readily seen that H^* (* \leq 7) is generated by $\chi \in H^3$ of order 2 and $\omega_5 = \tau s \in H^5$ of order 4 and that $p^*\chi = \chi$, $p^*\omega_5 = 0$ and $\chi\omega_5 \neq 0$. By Lemma 3, $f_4^2 - 8f_8 \in \text{Ker } i^*$ and it represents an element in $E_{\infty}^{8-q,q}$ for some q < 8, which is trivial if q > 0. Consequently $f_4^2 - 8f_8 = p^*e_8$ for some $e_8 \in H^8$. We choose e_8 such that $e_8 \equiv x_2^4 \pmod{2}$.

Next by Corollary 2 and Theorem 1, $H^9 = \mathbb{Z}\{e_9\}$ and $E_2^9 = \mathbb{Z}\{e_9\} + \mathbb{Z}_4\{\omega_5\} \otimes s$. On the other hand $H^9(E_6/U) = \mathbb{Z}\{z_9\}$ and $z_9 \mod 2$ is not a p^* -image. Note that $d_5(s^2) = 2\omega_5 \otimes s$, and we have $E_\infty^9 = \mathbb{Z}\{e_9\} + \mathbb{Z}_2\{\omega_5\} \otimes s$, whence $p^*e_9 = \pm 2z_9$. Looking into the filtration on $H^*(E_6/U)$, e_{17} is similarly defined, and $p^*e_{17} \equiv 2z_{17} \mod decomposables$.

Since $e_8^2 \equiv x_2^8 = 0 \mod 2$, e_8^2 is divisible by 2. Calculation in $H^*(E_6/U)$ shows that there is an element e_{16}' such that $e_8^2 = 4e_{16}'$, and $H^{16} = \mathbb{Z}\{e_{16}'\}$. For the similar reason we must introduce three more: $e_{17}' = \frac{1}{2}e_8e_9$,

$$e'_{25} = \frac{1}{2}e_8e_{17}$$
 and $e'_{34} = \frac{1}{4}e_8e_9e_{17}$.

At last for Tors. $H^*(EI)$. In E_r^* we see that $\chi^2 \otimes s$ is not a cocycle since $H^{10} = 0$, from which $\chi^2 \omega_5 = d_5(\chi^2 \otimes s) \neq 0$. But $\chi^2 \omega_5 \equiv x_3^2 x_5 \mod 2$, which vanishes. So we have another higher torsion ω_{11} such that $2\omega_{11} = \chi^2 \omega_5$. By similar argument we have two more: ω_{15} and ω_{23} . It is seen that for i = 5, 11, 15 and 23

$$\omega_i \mod 2 = x_i + x_2 x_{i-2} \equiv \beta' x_2 x_3 x_{i-6} \mod \operatorname{Im} \beta$$
 $(i \neq 5),$

where $\beta = \frac{1}{2}\delta$ and $\beta' = \frac{1}{4}\delta$ are Bockstein operations. Using the deriv-

ativity of β and β' and comparing with the mod 2 cohomology, we obtain the structure of Tors. $H^*(EI)$. From the procedure Theorem 2 follows.

References

- [1] S. Araki: Cohomology modulo 2 of the compact exceptional groups E_6 and E_7 . J. Math. Osaka City Univ., 12, 43-65 (1961).
- [2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces. Amer. J. Math., 80, 458-538 (1958).
- [3] E. Cartan: Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple. Ann. Sci. Ecole Norm. Sup., 44, 345-467 (1927).
- [4] K. Ishitoya: Integral cohomology ring of the symmetric space EII (to

- appear in J. Math. Kyoto Univ.).
- [5] K. Ishitoya and H. Toda: On the cohomology of irreducible symmetric spaces of exceptional type (to appear).
- [6] J.-P. Serre: Homologie singulière des espaces fibrés. Ann. of Math., 54, 425-505 (1951).
- [7] —: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. Math. Helv., 27, 198-232 (1953).