16. On the Periods of Enriques Surfaces. II

By Eiji Horikawa
University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1977)

This is a continuation of [4], and here we report on our result on the image of the period map for Enriques surfaces.

Let S be an Enriques surface defined over the field of complex numbers. Then there corresponds to S a point $\lambda(S)$, called the period of S, which is in the period space D / Γ. First we recall the construction of D and Γ. Let T be the universal covering of S. Then T is a $K 3$ surface, and hence the homology group $H_{2}(T, Z)$, given with the intersection product, is isomorphic to a unique even unimodular euclidean lattice Λ of signature (3, 19). Moreover, if we associate the involution τ induced by the covering transformation, the pair $\left(H_{2}(T, Z), \tau\right)$ is isomorphic to a standard pair (Λ, ρ) (see [4], § 3). Let $\Lambda(-1)$ denote the (-1)-eigenspace of ρ. Then D consists of non-zero linear maps $\omega: \Lambda(-1) \rightarrow C$, modulo multiplications by constants, which satisfy the Riemann bilinear relations

$$
\omega \cdot \omega=0, \quad \omega \cdot \bar{\omega}>0,
$$

the product being induced by that on $\Lambda(-1)$. On the other hand, Γ is the group of those automorphisms of $\Lambda(-1)$ which are the restrictions of the automorphisms of Λ commuting with ρ.

An element e of $\Lambda(-1)$ is called a root if it satisfies $e^{2}=-2$. From the explicit description of $\Lambda(-1)$ in [4], we infer that such elements exist. If e is a root, we define a hypersurface H_{e} of D by the condition $\omega(e)=0$. We shall use H_{e} / Γ to denote $H_{e} \Gamma / \Gamma$.

Main Theorem. There exists only a finite number of Γ-equivalence classes of the roots e in $\Lambda(-1)$, and if λ is a point of D / Γ outside of the union of the hypersurfaces H_{e} / Γ, then λ is the period of an Enriques surface S, which is uniquely determined by λ. Moreover, any point of H_{e} / Γ is not the period of an Enriques surface.

The basic idea of the proof is that of [3].
First, by the construction in [4], each Enriques surface S is birationally equivalent to a double covering of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. We take a system of 2-way homogeneous coordinates ($Y_{1}, Y_{2} ; Z_{1}, Z_{2}$) and fix the projection onto the second factor. Then the branch locus of the covering consists of the two fibres Γ_{i} defined by $Z_{i}=0, i=1,2$, and a curve B_{E}^{0} of bidegree (4, 4), which has two 2-fold double points at P_{i} on Γ_{i}, having the contact of order 4 with Γ_{i} at $P_{i}, i=1,2$. An Enriques surface S, with an elliptic
pencil being specified, is said to be of special type, if P_{1} and P_{2} are on a section $Y_{1}=\beta Y_{2}$ for some constant β (possibly ∞). Suppose this is not the case. Then we may assume that P_{i} is given by $Y_{i}=Z_{i}=0$, $i=1,2$. Hence B_{E}^{0} is defined by a linear combination of the monomials

$$
Y_{1}^{i} Y_{2}^{4-i} Z_{1}^{j} Z_{2}^{4-j}, \quad 4 \leqq i+2 j \leqq 8
$$

In order to obtain a model for the universal covering T, we consider the double covering $\pi: \boldsymbol{P}^{1} \rightarrow \boldsymbol{P}^{1}$ branched at $Z_{1}=0$ and $Z_{2}=0$. Pulling B_{E}^{0} back by π, and applying two elementary transformations, we see that T is birationally equivalent to a double covering of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, whose branch locus B is of bidegree (4,4), and is defined by a linear combination of the monomials
(1) $\quad Y_{1}^{i} Y_{2}^{4-i} Z_{1}^{j} Z_{2}^{4-j}, \quad i+j \equiv 0 \quad \bmod 2$.

The covering transformation is induced by
(2) $\quad I:\left(Y_{1}, Y_{2} ; Z_{1}, Z_{2}\right) \rightarrow\left(-Y_{1}, Y_{2} ;-Z_{1}, Z_{2}\right)$,
and the interchange of the sheets of $T \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
Next we consider Baily-Borel's compactification $(D / \Gamma)^{*}$ of D / Γ. Suppose that the branch locus B degenerates into a singular one. Then we take a 1-parameter family of the divisors defined by (1), whose generic member is non-singular. This determines a point in $(D / \Gamma)^{*}$, which can be thought of as the period corresponding to B. Note that this point may depend on the choice of the 1-parameter family.

If B passes through a fixed point of I defined by (2), say $Y_{1}=Z_{1}=0$, then the corresponding double covering T is still birationally equivalent to a $K 3$ surface. T has a double point over $Y_{1}=Z_{1}=0$, and this is a fixed point of the involution ι induced by I and the interchange of the sheets. Therefore the quotient space T / ι is not an Enriques surface, but a rational surface with a rational quadruple point. In this case the period is in H_{e} / Γ for some root e.

If B has infinitely near triple points, a quadruple point, or a double component, then the corresponding $K 3$ surface degenerates into a union of two rational surfaces intersecting along an elliptic curve (in "generic" cases). In this case the corresponding period is in the boundary of $(D / \Gamma)^{*}$. If B does not pass through the fixed points of I, then the corresponding degeneration of Enriques surface is a rational surface with a double curve along an elliptic curve. If B passes through a fixed point of I, it corresponds to a union of six rational surfaces, which consists of two rational surfaces S_{1}, S_{2} intersecting transversally along a rational curve, and four \boldsymbol{P}^{2} 's, each of which intersects S_{1} and S_{2} like three coordinate planes in C^{3}.

In these two cases, the period does not depend on the choice of the 1 -parameter family which we use. This fact follows from the extension theorem of Borel [2] and others. The same extension theorem allows us to restrict our consideration to generic cases.

Finally suppose that B has a triple or quadruple component. Then that component is of the form $Y_{1} Z_{2}-\alpha Y_{2} Z_{1}=0$ with some constant α. These cases can be reduced to the cases of lower multiplicities by blowing up along the multiple component (cf. [3], §§ 10-12. But the situation is more transparent here than it was there). In the case of triple components, the corresponding periods lie in the closure of the union of the hypersurfaces H_{e} / Γ. The case of quadruple components corresponds to Enriques surfaces of special type and their degenerations.

References

[1] Baily, W. L., Jr., and Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math., 84, 442-528 (1966).
[2] Borel, A.: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Diff. Geometry, 6, 543-560 (1972).
[3] Horikawa, E.: Surjectivity of the period map of $K 3$ surfaces of degree 2 (to appear in Math. Ann.).
[4] -: On the periods of Enriques surfaces. I. Proc. Japan Acad., 53, 124-127 (1977).

