16. On the Periods of Enriques Surfaces. II

By Eiji Horikawa

University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1977)

This is a continuation of [4], and here we report on our result on the image of the period map for Enriques surfaces.

Let S be an Enriques surface defined over the field of complex numbers. Then there corresponds to S a point $\lambda(S)$, called the period of S, which is in the period space D/Γ . First we recall the construction of D and Γ . Let T be the universal covering of S. Then T is a K3 surface, and hence the homology group $H_2(T, Z)$, given with the intersection product, is isomorphic to a unique even unimodular euclidean lattice Λ of signature (3, 19). Moreover, if we associate the involution τ induced by the covering transformation, the pair $(H_2(T, Z), \tau)$ is isomorphic to a standard pair (Λ, ρ) (see [4], § 3). Let $\Lambda(-1)$ denote the (-1)-eigenspace of ρ . Then D consists of non-zero linear maps $\omega: \Lambda(-1) \rightarrow C$, modulo multiplications by constants, which satisfy the Riemann bilinear relations

$$\omega \cdot \omega = 0, \qquad \omega \cdot \overline{\omega} > 0,$$

the product being induced by that on $\Lambda(-1)$. On the other hand, Γ is the group of those automorphisms of $\Lambda(-1)$ which are the restrictions of the automorphisms of Λ commuting with ρ .

An element e of $\Lambda(-1)$ is called a *root* if it satisfies $e^2 = -2$. From the explicit description of $\Lambda(-1)$ in [4], we infer that such elements exist. If e is a root, we define a hypersurface H_e of D by the condition $\omega(e)=0$. We shall use H_e/Γ to denote $H_e\Gamma/\Gamma$.

Main Theorem. There exists only a finite number of Γ -equivalence classes of the roots e in $\Lambda(-1)$, and if λ is a point of D/Γ outside of the union of the hypersurfaces H_e/Γ , then λ is the period of an Enriques surface S, which is uniquely determined by λ . Moreover, any point of H_e/Γ is not the period of an Enriques surface.

The basic idea of the proof is that of [3].

First, by the construction in [4], each Enriques surface S is birationally equivalent to a double covering of $P^1 \times P^1$. We take a system of 2-way homogeneous coordinates $(Y_1, Y_2; Z_1, Z_2)$ and fix the projection onto the second factor. Then the branch locus of the covering consists of the two fibres Γ_i defined by $Z_i=0$, i=1, 2, and a curve B_E^0 of bidegree (4, 4), which has two 2-fold double points at P_i on Γ_i , having the contact of order 4 with Γ_i at P_i , i=1, 2. An Enriques surface S, with an elliptic

Е.	HORIKA	w	A
----	--------	---	---

pencil being specified, is said to be of special type, if P_1 and P_2 are on a section $Y_1 = \beta Y_2$ for some constant β (possibly ∞). Suppose this is not the case. Then we may assume that P_i is given by $Y_i = Z_i = 0$, i=1,2. Hence B_E^0 is defined by a linear combination of the monomials $Y_i^i Y_2^{-i} Z_j^j Z_2^{i-j}$, $4 \le i+2j \le 8$.

In order to obtain a model for the universal covering T, we consider the double covering $\pi: P^1 \to P^1$ branched at $Z_1 = 0$ and $Z_2 = 0$. Pulling B^0_E back by π , and applying two elementary transformations, we see that T is birationally equivalent to a double covering of $P^1 \times P^1$, whose branch locus B is of bidegree (4, 4), and is defined by a linear combination of the monomials

(1) $Y_1^i Y_2^{4-i} Z_1^j Z_2^{4-j}$, $i+j \equiv 0 \mod 2$. The covering transformation is induced by

(2) $I: (Y_1, Y_2; Z_1, Z_2) \rightarrow (-Y_1, Y_2; -Z_1, Z_2),$ and the interchange of the sheets of $T \rightarrow P^1 \times P^1$.

Next we consider Baily-Borel's compactification $(D/\Gamma)^*$ of D/Γ . Suppose that the branch locus *B* degenerates into a singular one. Then we take a 1-parameter family of the divisors defined by (1), whose generic member is non-singular. This determines a point in $(D/\Gamma)^*$, which can be thought of as the period corresponding to *B*. Note that this point may depend on the choice of the 1-parameter family.

If B passes through a fixed point of I defined by (2), say $Y_1 = Z_1 = 0$, then the corresponding double covering T is still birationally equivalent to a K3 surface. T has a double point over $Y_1 = Z_1 = 0$, and this is a fixed point of the involution ι induced by I and the interchange of the sheets. Therefore the quotient space T/ι is not an Enriques surface, but a rational surface with a rational quadruple point. In this case the period is in H_e/Γ for some root e.

If B has infinitely near triple points, a quadruple point, or a double component, then the corresponding K3 surface degenerates into a union of two rational surfaces intersecting along an elliptic curve (in "generic" cases). In this case the corresponding period is in the boundary of $(D/T)^*$. If B does not pass through the fixed points of I, then the corresponding degeneration of Enriques surface is a rational surface with a double curve along an elliptic curve. If B passes through a fixed point of I, it corresponds to a union of six rational surfaces, which consists of two rational surfaces S_1, S_2 intersecting transversally along a rational curve, and four P^2 's, each of which intersects S_1 and S_2 like three coordinate planes in C^3 .

In these two cases, the period does not depend on the choice of the 1-parameter family which we use. This fact follows from the extension theorem of Borel [2] and others. The same extension theorem allows us to restrict our consideration to generic cases. No. 2]

Finally suppose that B has a triple or quadruple component. Then that component is of the form $Y_1Z_2 - \alpha Y_2Z_1 = 0$ with some constant α . These cases can be reduced to the cases of lower multiplicities by blowing up along the multiple component (cf. [3], §§ 10-12. But the situation is more transparent here than it was there). In the case of triple components, the corresponding periods lie in the closure of the union of the hypersurfaces H_e/Γ . The case of quadruple components corresponds to Enriques surfaces of special type and their degenerations.

References

- [1] Baily, W. L., Jr., and Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math., 84, 442-528 (1966).
- [2] Borel, A.: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Diff. Geometry, 6, 543-560 (1972).
- [3] Horikawa, E.: Surjectivity of the period map of K3 surfaces of degree 2 (to appear in Math. Ann.).
- [4] ——: On the periods of Enriques surfaces. I. Proc. Japan Acad., 53, 124-127 (1977).