46. Jackson-Type Estimates for Monotone Approximation

By Kiichi Ishisaki
Toyama Technical College

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1977)

1. Denote by H_{n}, the set of all polynomials of degree n or less, and by $H_{n, k}(k \leqq n)$, the set of all $P_{n} \in H_{n}$ satisfying $P_{n}^{(k)}(x) \geqq 0$ on $[0,1]$. Define $E_{n}(f)=\inf _{P_{n} \in H_{n}}\left\|f-P_{n}\right\|$ and $E_{n, k}(f)=\inf _{P_{n} \in H_{n, k}}\left\|f-P_{n}\right\|$, where $\|\cdot\|$ is the supremum norm of functions continuous on $[0,1]$.

Many authors have investigated on the degree of monotone approximation. For instance, see [1]-[4], [6]-[9]. We would like to prove the inequality

$$
\begin{equation*}
E_{n, k}(f) \leqq \frac{C}{n^{k}} E_{n-k}\left(f^{(k)}\right) \tag{1}
\end{equation*}
$$

for $f \in C^{k}[0,1]$. Here C denotes a positive constant depending upon k. This result is true for the unconstrained degree of approximation $E_{n}(f)$.

For the function $x^{2 n+1}(n=1,2, \cdots)$ that increases on $[-1,+1]$, R. A. DeVore [1] proved the following: Let $\alpha=\log _{3} 4-1$ and $\beta=1$ $-\log _{a} 2$, with $a=2+3^{1 / 2}$. Then there exist constants $C_{1}, C_{2}>0$, such that

$$
C_{1} n^{\alpha} 2^{-2 n} \leqq E_{2 n, 1}\left(x^{2 n+1}\right) \leqq C_{2} n^{\beta} 2^{-2 n}, \quad n=1,2, \cdots
$$

However we have

$$
E_{2 n-1}\left(x^{2 n}\right)=\left\|x^{2 n}-\left(x^{2 n}-2^{-(2 n-1)} C_{2 n}(x)\right)\right\|=2^{-(2 n-1)},
$$

where $C_{2 n}(x)$ is the Chebyshev polynomial of degree $2 n$. Hence, in this case, (1) does not hold for $k=1$. For $x^{2 n+1}$ vanishes at $x=0$.
J. A. Roulier [6] examined this problem and proved the following:
(i) For $f \in C^{1}[0,1]$ with $f^{\prime}(x)>0$ on $[0,1]$, we have

$$
E_{n, 1}(f) \leqq \frac{5}{2 n^{1 / 2}} E_{n-1}\left(f^{\prime}\right), \quad n \geqq N(f)
$$

(ii) For any $k=2,3, \cdots$ and $f \in C^{k}[0,1]$ with $f^{(k)}(x)>0$ on $[0,1]$, we have

$$
E_{n, k}(f) \leqq \frac{2}{n} E_{n-k}\left(f^{(k)}\right), \quad n \geqq N(f, k),
$$

$N(f, k)$ denoting a certain positive integer depending upon f and k.
The purpose of this paper is to prove that the inequality (1) holds under the assumption of Roulier.
2. Theorem. For any $k=1,2, \cdots$ and $f \in C^{k}[0,1]$ satisfying $f^{(k)}(x)>0$ on $[0,1]$, we have

$$
E_{n, k}(f) \leqq \frac{C}{n^{k}} E_{n-k}\left(f^{(k)}\right), \quad n \geqq N(f, k),
$$

with C depending only on k.
Proof. Let $Q_{n-k}(x)$ be the polynomial of best approximation from H_{n-k} to $f^{(k)}(x)$ on $[0,1]$. For a fixed integer $n(n \geqq k)$, we define

$$
\phi(x)=\int_{0}^{x} \int_{0}^{x_{1}} \cdots \int_{0}^{x_{k-1}} Q_{n-k}(t) d t d x_{k-1} \cdots d x_{1}-f(x) .
$$

Because of $\phi^{(k)}(x)=Q_{n-k}(x)-f^{(k)}(x) \in C[0,1]$, and by using the results of Trigub [10] (see also Malozemov [5]), we see that there exists a $P_{n} \in H_{n}$ with the properties

$$
\left\|\phi^{(r)}-P_{n}^{(r)}\right\| \leqq \frac{C_{1}}{n^{k-r}} \omega\left(\phi^{(k)}, \frac{1}{n}\right), \quad r=0,1, \cdots, k
$$

where C_{1} is a constant depending only on k, and $\omega(g, \cdot)$ is the modulus of continuity. Putting $r=0$, we get

$$
\begin{aligned}
\left\|\phi-P_{n}\right\| & \leqq \frac{C_{1}}{n^{k}} \omega\left(\phi^{(k)}, \frac{1}{n}\right) \\
& \leqq \frac{2 C_{1}}{n^{k}} E_{n-k}\left(f^{(k)}\right)=\frac{C}{n^{k}} E_{n-k}\left(f^{(k)}\right)
\end{aligned}
$$

When $r=k$, we obtain for $0 \leqq x \leqq 1$

$$
\begin{align*}
P_{n}^{(k)}(x) & \leqq \phi^{(k)}(x)+C_{1} \omega\left(\phi^{(k)}, \frac{1}{n}\right) \\
& =Q_{n-k}(x)-f^{(k)}(x)+C_{1} \omega\left(\phi^{(k)}, \frac{1}{n}\right) \tag{2}\\
& \leqq Q_{n-k}(x)-f^{(k)}(x)+C E_{n-k}\left(f^{(k)}\right) .
\end{align*}
$$

Define

$$
\tilde{P}_{n}(x)=\int_{0}^{x} \int_{0}^{x_{1}} \cdots \int_{0}^{x_{k-1}} Q_{n-k}(t) d t d x_{k-1} \cdots d x_{1}-P_{n}(x) .
$$

Thus, we have a sequence of polynomials $\tilde{P}_{n}(x) \in H_{n}$ such that

$$
\begin{aligned}
\left|f(x)-\tilde{P}_{n}(x)\right| & =\left|\phi(x)-P_{n}(x)\right| \\
& \leqq \frac{C}{n^{k}} E_{n-k}\left(f^{(k)}\right) \quad \text { on }[0,1] .
\end{aligned}
$$

Further, using (2) and $f^{(k)}(x)>0$ on $[0,1]$, we have for $0 \leqq x \leqq 1$

$$
\begin{aligned}
\tilde{P}_{n}^{(k)}(x) & =Q_{n-k}(x)-P_{n}^{(k)}(x) \\
& \geqq f^{(k)}(x)-C E_{n-k}\left(f^{(k)}\right) .
\end{aligned}
$$

By the polynomial approximation theorem of Weierstrass, the right hand term is $\geqq 0$ for $n \geqq N(f, k)$. This completes the proof.
3. The case $k=1$ in the theorem follows from the stronger inequality

$$
E_{n, 1}(f) \leqq C E_{n}(f), \quad n \geqq N(f),
$$

which was shown by J. A. Roulier [7].
I would like to express my hearty thanks to Professor R.A. DeVore for his kind advice.

References

[1] R. A. DeVore: Degree of monotone approximation. Linear Operators and Approximation II, Birkhäuser, Basel-Stuttgart, 337-351 (1974).
[2] G. G. Lorentz: Monotone approximation. Inequalities III, Academic Press, New York, 201-215 (1972).
[3] G. G. Lorentz and K. L. Zeller: Degree of approximation by monotone polynomials. I. J. Approximation Theory, 1, 501-504 (1968).
[4] -: Degree of approximation by monotone polynomials. II. J. Approximation Theory, 2, 265-269 (1969).
[5] V. N. Malozemov: Joint approximation of a function and its derivatives by algebraic polynomials. Soviet Math. Dokl., 7, 1274-1276 (1966).
[6] J. A. Roulier: Monotone approximation of certain classes of functions. J. Approximation Theory, 1, 319-324 (1968).
[7] -: Some remarks on the degree of monotone approximation. J. Approximation Theory, 14, 225-229 (1975).
[8] --: Best approximation to functions with restricted derivatives. J. Approximation Theory, 17, 344-347 (1976).
[9] O. Shisha: Monotone approximation. Pacific J. Math., 15, 667-671 (1965).
[10] R. M. Trigub: Approximation of functions by polynomials with integral coefficients. Izv. Akad. Nauk SSSR, Ser. Mat., 26, 261-280 (1962).

