55. On Families of Effective Divisors on Algebraic Manifolds

By Makoto NAMBA^{*}) Tohoku University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1977)

1. By an algebraic manifold, we mean a connected compact complex manifold imbedded in a complex projective space. Let V be an algebraic manifold. We denote by Pic⁰ (V) the set of all holomorphic line bundles on V whose Chern classes vanish. It is well known that Pic⁰ (V) is an abelian variety of dimension $q = \dim H^1(V, \mathcal{O})$, the irregularity of V. Let $c \in H^2(V, \mathbb{Z})$ be a cohomology class of type (1, 1). We put

 $D^{c}(V) = \{D \mid D \text{ is an effective divisor on } V \text{ with } c([D]) = c\},\$

where [D] is the line bundle determined by D and c([D]) is the Chern class of [D]. According to Weil [7] (see also Kodaira [3]), $D^{c}(V)$ is a projective variety (i.e., a complex space imbedded in a complex projective space) and the Jacobi mapping

 $\Phi: D \in \mathbf{D}^{c}(V) \rightarrow [D - D_{o}] \in \operatorname{Pic}^{0}(V)$

is holomorphic, where $D_a \in D^c(V)$ is a fixed effective divisor.

In this note, we state the following theorems. Details will be published elsewhere.

Theorem 1. Assume that there is an effective divisor $D \in D^{c}(V)$ such that

 $\dim H^{0}(V, \mathcal{O}([D])) > \dim H^{1}(V, \mathcal{O}([D])).$

Then the Jacobi mapping Φ is surjective and each fiber of Φ has dimension at least dim $H^{0}(V, \mathcal{O}([D])) - \dim H^{1}(V, \mathcal{O}([D])) - 1$.

In general, we put $W_c = \Phi(D^c(V))$. It is a closed subvariety of Pic^o (V).

Theorem 2. For an effective divisor $D \in D^{c}(V)$, put $a = \dim H^{0}(V, \mathcal{O}([D]))$ and $b = \dim H^{1}(V, \mathcal{O}([D]))$. Assume that $a \leq b$. Then there are an open neighbourhood U of $x = \Phi(D)$ in Pic⁰ (V) and a $(a \times b)$ -matrix valued holomorphic function A(y), $y \in U$, on U such that $W_{c} \cap U$ is the set of zeros of all $a \times a$ minors of A(y).

Remark. If V is a non-singular curve, then Theorem 1 reduces to Jacobi inversion problem and Theorem 2 reduces to Kempf's theorem [5].

2. Theorem 1 and Theorem 2 are easy consequences of the fol-

³ Supported by Alexander von Humboldt Foundation.

No. 6]

lowing theorems. In the sequel, by a complex space, we mean a reduced, Hausdorff, complex analytic space.

Theorem 3. Let $\{V_s\}_{s\in S}$ be a family of compact complex manifolds with the parameter space S, a complex space. Let $\{F_s\}_{s\in S}$ be a family of holomorphic vector bundles over $\{V_s\}_{s\in S}$. Then, for each point $o \in S$, there are an open neighbourhood S' of o in S and a vector bundle homomorphism

 $u: H^{0}(V_{o}, \mathcal{O}(F_{o})) \times S' \rightarrow H^{1}(V_{o}, \mathcal{O}(F_{o})) \times S'$

such that the union $\bigcup_{s \in S'} H^0(V_s, \mathcal{O}(F_s))$ is identified with the kernel of u.

The following Theorem 4 and Theorem 5 are considered as special cases of Schuster [6].

Theorem 4. Let $\{V_s\}_{s\in S}$ and $\{F_s\}_{s\in S}$ be as in Theorem 3. Then the union $H = \bigcup_{s\in S} H^0(V_s, \mathcal{O}(F_s))$ admits a complex space structure so that (H, λ, S) is a complex linear space in the sense of Grauert [1], where $\lambda: H \to S$ is the canonical projection.

Theorem 5. Let $\{V_s\}_{s\in S}$ and $\{F_s\}_{s\in S}$ be as in Theorem 3. Let $P(F_s)$ be the projective space associated with $H^0(V_s, \mathcal{O}(F_s))$. $(P(F_s)$ is empty if $H^0(V_s, \mathcal{O}(F_s))=0$.) Then the union $P=\bigcup_{s\in S} P(F_s)$ admits a complex space structure so that the canonical projection $\mu: P \to S$ is a proper holomorphic mapping.

By Theorem 3, we easily get

Theorem 6. Let $\{V_s\}_{s\in S}$, $\{F_s\}_{s\in S}$ and $\mu: \mathbb{P} \to S$ be as in Theorem 5. For a point $o \in S$, assume that dim $H^0(V_o, \mathcal{O}(F_o)) > \dim H^1(V_o, \mathcal{O}(F_o))$. Then there is an open neighbourhood S' of o in S such that $\mu' = \mu | \mu^{-1}(S') : \mu^{-1}(S') \to S'$ is surjective and each fiber of μ' has dimension at least dim $H^0(V_o, \mathcal{O}(F_o)) - \dim H^1(V_o, \mathcal{O}(F_o)) - 1$.

Theorem 7. Let $\{V_s\}_{s\in S}$, $\{F_s\}_{s\in S}$ and $\mu: P \to S$ be as in Theorem 5. For a point $o \in S$, put $a = \dim H^o(V_o, \mathcal{O}(F_o))$ and $b = \dim H^1(V_o, \mathcal{O}(F_o))$. Assume that $a \leq b$. Then there are an open neighbourhood S' of o in S and a $(a \times b)$ -matrix valued holomorphic function A(s), $s \in S'$, on S' such that $\mu(P) \cap S'$ is the set of zeros of all $a \times a$ minors of A(s).

3. In order to get Theorem 1 and Theorem 2 from the theorems in §2, we consider the case

$$S = \operatorname{Pic}^{0}(V),$$

$$V_{x} = V \text{ (fixed),}$$

$$F_{x} = B_{x} \otimes [D_{o}],$$

where B_x is the line bundle, with the Chern class 0, corresponding to the point $x \in \text{Pic}^0(V)$. Then we can easily prove that the complex space P in Theorem 5 is canonically biholomorphic to $D^{\circ}(V)$. Now, Theorem 6 and Theorem 7 reduce to Theorem 1 and Theorem 2, respectively. 4. Let $x \in \operatorname{Pic}^{0}(V)$. Let

$$\sigma: H^{0}(V, \mathcal{O}(F_{x})) \times H^{1}(V, \mathcal{O}) \rightarrow H^{1}(V, \mathcal{O}(F_{x}))$$

be the bilinear map defined by

 $\sigma(\xi, h)_{ik}(z) = \xi_i(z) h_{ik}(z),$

where $\xi = \{\xi_i(z)\} \in H^0(V, \mathcal{O}(F_x))$ and $h = \{h_{ik}(z)\} \in H^1(V, \mathcal{O})$ for a suitable Stein open covering $\{U_i\}$ of V. We put

$$\sigma(\xi, h) = \sigma_{\varepsilon}(h) = \sigma(h)(\xi)$$

by abuse of notation. Let $D = (\xi)$ be the zero divisor of ξ . D is said to be *semi-regular* if and only if the linear map $\sigma_{\xi} : H^{1}(V, \mathcal{O}) \to H^{1}(V, \mathcal{O}(F_{x}))$ is surjective. Note that if V is a non-singular curve, then every D is semi-regular.

The semi-regularity theorem by Kodaira-Spencer [4] says that if D is semi-regular, then D is a non-singular point of $D^{c}(V)$ and

 $\dim_D D^{\circ}(V) = \dim H^{\circ}(V, \mathcal{O}([D])) - \dim H^{1}(V, \mathcal{O}([D])) + q - 1.$ We note that the differential at (ξ, x) of the mapping u in Theorem 3 is equal to

$$\begin{pmatrix} 0 & \sigma_{\ell} \\ 0 & 1 \end{pmatrix}$$

in our case. From this fact, we get the semi-regularity theorem.

Finally, we generalize Kempf's theorems [2] as follows: For a point $x \in \text{Pic}^0(V)$, assume that every divisor in $\Phi^{-1}(x)$ is semi-regular. Let N and C be the normal bundle of $D^c(V)$ along $\Phi^{-1}(x)$ and the tangent cone of $W_c = \Phi(D^c(V))$ at x, respectively. Let

$$o: N \rightarrow C$$

be the mapping induce by Φ .

Kempf's theorem for algebraic manifolds (c.f. Kempf [2]). For a point $x \in \text{Pic}^{0}(V)$, assume that every divisor in $\Phi^{-1}(x)$ is semi-regular. Assume moreover that

$$\dim H^{0}(V, \mathcal{O}(F_{x})) \leq \dim H^{1}(V, \mathcal{O}(F_{x})) + 1.$$

Then

(1) $\rho: N \rightarrow C$ is a rational resolution.

(2) The degree of C is the binomial coefficient

$$\dim H^{1}(V, \mathcal{O}(F_{x}))$$

$$\dim H^{0}(V, \mathcal{O}(F_{x})) - 1 \Big).$$

(3) If dim $H^{0}(V, \mathcal{O}(F_{x})) \leq \dim H^{1}(V, \mathcal{O}(F_{x}))$, then the ideal defining C is generated by the maximal minors of the matrix valued function $\sigma(h)$ on $H^{1}(V, \mathcal{O})$.

References

 H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 331-368 (1962).

208

No. 6]

- [2] J. Kempf: On the geometry of a theorem of Riemann. Ann. Math., 98, 178-185 (1973).
- [3] K. Kodaira: Characteristic linear systems of complete continuous systems. Amer. J. Math., 78, 716-744 (1956).
- [4] K. Kodaira and D. C. Spencer: A theorem of completeness of characteristic systems of complete continuous systems. Amer. J. Math., 81, 477-500 (1959).
- [5] D. Mumford: Curves and their Jacobians. The University of Michigan Press, 1975.
- [6] H. Schuster: Zur Theorie der Deformationen kompakter komplexer Räume. Inv. Math., 9, 284-294 (1970).
- [7] A. Weil: On Picard varieties. Amer. J. Math., 74, 865-894 (1952).