53. On Bounded Sets of Holomorphic Germs

By Roberto Luiz SORAGGI

Institute of Mathematics, Federal University of Rio de Janeiro

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1977)

Let E, F be separated, complex locally convex spaces, $\mathcal{H}(U; F)$ and $\mathcal{H}(K; F)$ denote the spaces of holomorphic mappings on an open subset U of E and of holomorphic germs on a compact subset K of E, respectively, endowed with their natural topologies (see Barroso [1], Mujica [4], Nachbin [5]). It is interesting to characterize the bounded subsets of $\mathcal{H}(K; F)$ in terms of the successive differentials. Such a characterization would be useful, by example, in the study of sequential convergence in $\mathcal{H}(K; F)$. Let \mathcal{F} be a subset of $\mathcal{H}(K; F)$, Γ a family of seminorms defining the topology of F. We say that \mathcal{F} has an estimate for the differentials in K if there exist a continuous seminorm α on E, real numbers C > 0, c > 0 such that for every β in Γ we have:

 $\sup_{x \in K} \left\| \frac{1}{m!} \hat{d}^m f(x) \right\|_{\scriptscriptstyle \alpha\beta} \leq C c^m \quad \text{for every } \tilde{f} \in \mathcal{F}, f \in \check{f}, m \in N.$

One knows that an estimate for the differentials in K is not a sufficient condition for boundedness in $\mathcal{H}(K; F)$, but a bounded subset of $\mathcal{H}(K; F)$ has an estimate for the differentials when E and F are Banach spaces (Chae [2] and Wanderley [6]). Zame [7] showed that, under a weak local connectedness assumption on K, when K is a compact subset of C^n , an estimate for the differentials in K implies boundedness in the space $\mathcal{H}(K)$. The arguments used by Zame can be used in the general case.

Definition 1. Let X be a topological space, K a compact subset of X. We consider the following equivalence relation on $X: x, y \in X$, $x \sim y$ iff $x, y \in K$ or x=y. We denote by X/K the quotient space endowed with its natural topology, and K/K the equivalence class of an element of K.

Definition 2. Let X and K be as above. We say that K is of type LQC if, for every $x \in K$, there exists a sequence $K_1 \subset \cdots \subset K_n$ of compact connected subsets of K such that $K_1 = \{x\}, K_{i+1}/K_i$ is locally connected for $i=1, \cdots, n-1$ and K/K_n is locally connected in K_n/K_n . We say that K is of type QC if there exists a sequence $K_1 \subset \cdots \subset K_n$ of compact connected subsets of K such that $K_1, K_{i+1}/K_i$ (for $i=1, \cdots, n-1$), K/K_n are locally connected. If K is locally connected then K is a compact of types LQC and QC. The class of compact subsets of E which

are of type LQC is different from the class of compact subsets of E which are of type QC.

Now, we generalize the concept of analytic manifold which appears in Gunning and Rossi [3]. We denote $\mathcal{O}(U; F) =_U \mathcal{O}(F)$ the shearf of germs of holomorphic *F*-valued mappings over *U*.

Definition 3. Let X be a separated topological space, $\mathcal{O}(X; F)$ a sheaf of groups over X, $x \in X$ and U a basis for the open subsets of X. Denote \mathcal{U}_x the family of those open subsets U of U such that U contains x. Suppose that for every U in U there exists a subgroup \mathcal{S}_U of the group $\mathcal{C}(U; F)$ of continuous F-valued mappings in U and denote $\pi: \mathcal{O}(X; F) \to X$ the natural mapping. If $\tilde{g} \in \pi^{-1}(x) = {}_x\mathcal{O}_x(F)$ and there exists a continuous mapping $g: U_0 \to F$, $U_0 \in \mathcal{U}_x$ such that $\tilde{g} = \{f \in \mathcal{S}_U; U \in \mathcal{U}_x; f = g \text{ in a neighborhood of } x \text{ contained in } U \cap U_0\}$ we say that \tilde{g} is a restriction of a germ of continuous F-valued mapping at x. An F-grouped space is a pair $(X, \mathcal{O}(X; F))$ such that, for every $x \in X$ each element in the stalk ${}_x\mathcal{O}_x(F)$ is a restriction of a germ of continuous Fvalued mapping at x.

Definition 4. Let $(X, \mathcal{O}(X; F))$ and $(Y, \mathcal{O}(Y; F))$ be *F*-grouped spaces. We say that these *F*-grouped spaces are isomorphic if there exists a continuous mapping $f: X \to Y$ such that for every $x \in X$ and $\tilde{h} \in {}_{Y}\mathcal{O}_{f(x)}(F)$ we have $h \circ \tilde{f} \in {}_{X}\mathcal{O}_{x}(F)$, the mapping of ${}_{Y}\mathcal{O}_{f(x)}(F)$ into ${}_{X}\mathcal{O}_{x}(F)$ given by $\tilde{h} \to \tilde{h} \circ f$ is surjective for every x and f is a homeomorphism.

Definition 5. An F-grouped space is an F-analytic manifold modelled on E if, for every $x \in X$, there exists an open neighborhood V of x such that $(V, {}_{x}\mathcal{O}(F)|V)$ is isomorphic to $(U, {}_{v}\mathcal{O}(F))$, for some open subset U of E.

Definition 6. Let \mathcal{F} be a subset of $\mathcal{H}(K; F)$ and $x \in K$. \mathcal{F} is extendible at x if there exists an open subset U_x of E containing x such that for every $\tilde{f} \in \mathcal{F}$ there is a holomorphic mapping $f^x: U_x \to F$ with the property that $f^x = f$ in some neighborhood of x, for some $f \in \tilde{f}$. \mathcal{F} is extendible if there exist an open subset U of E containing K and a family $\mathcal{F}_U \subset \mathcal{H}(U; F)$ such that $T_U(\mathcal{F}_U) = \mathcal{F}$, where T_U denotes the natural mapping of $\mathcal{H}(U; F)$ into $\mathcal{H}(K; F)$.

Using the concept of *F*-analytic manifold we get:

Theorem 1. Let K be a compact subset of E of types LQC or QC. Then $\mathcal{F} \subset \mathcal{H}(K; F)$ is extendible if and only if \mathcal{F} is extendible at every point of K.

Corollary. Suppose F is a complete and N-complete space (see Barroso [1]), K a compact subset of E of types LQC or QC. Let \mathcal{F} be a subset of $\mathcal{H}(K; F)$ having an estimate for the differentials in K. Then \mathcal{F} is extendible.

Proposition 1. Let K and F be as before. Suppose that $\mathcal{F} \subset \mathcal{H}(K;F)$

has an estimate for the differentials in K, and this estimate is concerned with a family Γ such that, for every $\beta \in \Gamma$, F_{β} is complete. Then \mathcal{F} is a bounded subset of $\mathcal{H}(K; F)$.

The converse to Proposition 1 is not true in the general case.

Theorem 2. Let E be a metrizable locally convex space, K a compact subset of E of types LQC or QC, F a Banach space. For every subset \mathcal{F} of $\mathcal{H}(K; F)$, a necessary and sufficient condition for \mathcal{F} to be bounded is that \mathcal{F} has an estimate for the differentials in K.

It follows from Proposition 1 that the above condition is sufficient. Necessity follows from the characterization of the bounded subsets of $\mathcal{H}(K; F)$ given by Mujica [4].

About sequential convergence in $\mathcal{H}(K; F)$, we get:

Proposition 2. Let F and K be as in Corollary, Γ a directed family of seminorms generating the topology of F such that F_{β} is complete for every β in Γ . Let $\{f_n, n \in N\}$ a sequence in $\mathcal{H}(K; F)$. If there exist real numbers C > 0, c > 0 and a continuous seminorm α on E such that for every $\varepsilon > 0$ we can find a natural number n, with the property that:

 $\sup_{x \in K} \left\| \frac{1}{m!} \hat{d}^m f_n(x) \right\|_{\alpha\beta} \leq \varepsilon C c^m \text{ for every } m \in N, \beta \in \Gamma, n \geq n, \text{ and } f_n \in \tilde{f}_n \text{ (we } L^{\beta})$

say that the sequence has an z-estimate for the differentials in K), then the sequence $\{\tilde{f}_n\}$ converges to zero in $\mathcal{H}(K; F)$.

Otherwise, by a result from Mujica [4], we get:

Proposition 3. Let E be a metrizable locally convex space with Condition B (see Barroso [1]), F a Banach space, K a compact subset of E. If the sequence $\{\tilde{f}_n\}$ converges to zero in $\mathcal{H}(K; F)$, then for every $\varepsilon > 0$ the sequence has an ε -estimate for the differentials in K.

Theorem 3. Let E, F be as in Proposition 3 and K be a compact subset of E of types LQC or QC. Then the sequence $\{\tilde{f}_n\}$ coverges to zero in $\mathcal{H}(K; F)$ if and only if for every $\varepsilon > 0$ the sequence $\{\tilde{f}_n\}$ has an ε -estimate for the differentials in K.

References

- J. A. Barroso: Topologia nos espaços de aplicações holomorfas entre espaços localmente convexos. Anais da Academia Brasileira de Ciências, 43, 527-545 (1971).
- [2] S. B. Chae: Holomorphic germs on Banach spaces. Ann. Inst. Fourier, Grenoble, 21(3), 107-141 (1971).
- [3] R. Gunning and H. Rossi: Analytic functions of several complex variables. Prentice-Hall, Englewood Cliffs, New Jersey (1965).
- [4] J. Mujica: Spaces of germs of holomorphic functions. Advances in Mathematics (to appear).
- [5] L. Nachbin: A glimpse at infinite dimensional holomorphy. Proceedings on Infinite Dimensional Holomorphy (1973); Lerture Notes in Mathematics,

364, Springer-Verlag.

- [6] A. Wanderley: Germes de aplicações holomorfas em espaços localmente convexos. Tese, Universidade Federal do Rio de Janeiro, Brasil (1974).
- [7] W. B. Zame: Extendibility, boundedness and sequential convergence in spaces of holomorphic functions. Pacific Journal of Mathematics, 57(2), 619-628 (1975).