52. The Paley.Wiener Type Theorem for Finite Covering Groups of $\operatorname{SU}(\mathbf{1}, \mathbf{1})$

By Takaaki Nomura
Faculty of Science, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1977)

An n-fold covering group G of $S U(1,1)$ is realized as $G=\{(\gamma, \omega)$; $\gamma \in \boldsymbol{C},|\gamma|<1, \omega \in \boldsymbol{R} / 2 n \pi \boldsymbol{Z}\}$ with the multiplication: $(\gamma, \omega)\left(\gamma^{\prime}, \omega^{\prime}\right)=\left(\gamma^{\prime \prime}, \omega^{\prime \prime}\right)$, where $\gamma^{\prime \prime}=\left(\gamma e^{-2 i \omega^{\prime}}+\gamma^{\prime}\right)\left(1+\gamma \gamma^{\prime} e^{-2 i \omega^{\prime}}\right)^{-1}$, and
$\omega^{\prime \prime} \equiv \omega+\omega^{\prime}+(2 i)^{-1} \log \left(1+\gamma \bar{\gamma}^{\prime} e^{-2 i \omega^{\prime}}\right)\left(1+\bar{\gamma} \gamma^{\prime} e^{2 i \omega^{\prime}}\right)^{-1} \quad(\bmod 2 n \pi)$,
and we take the principal branch of logarithm. Put $u_{\theta}=(0,-\theta / 2)$, $a_{t}=($ th $(t / 2), 0)$. Then each element $g \in G$ can be expressed as g $=u_{\varphi} a_{t} u_{\psi}(0 \leq \varphi<4 n \pi, t \geq 0,0 \leq \psi<2 \pi)$.
§ 1. Let $d \mu(\zeta)$ be the ordinary normalized Haar measure on the unit circle \boldsymbol{T} in \boldsymbol{C} and put $\mathscr{S}=L^{2}(\boldsymbol{T} ; d \mu(\zeta))$. For any integer k with $-n+1 \leq k \leq n$ and $s \in C$, we define operators $U^{k}(g, s)(g \in G)$ by

$$
U^{k}(g, s) f(\zeta)=e^{-2 i \omega \lambda_{k}}\left[\frac{1+\bar{\gamma} \zeta}{1+\gamma \bar{\zeta}}\right]^{\lambda_{k}}\left(1-|\gamma|^{2}\right)^{1 / 2+s}|1+\bar{\gamma} \zeta|^{-1-2 s} f\left(e^{2 i \omega} \frac{1+\gamma \bar{\zeta}}{1+\bar{\gamma} \zeta}\right)
$$

where $\lambda_{k}=k / 2 n, g^{-1}=(\gamma, \omega), \zeta \in \boldsymbol{T}$ and $f \in \mathscr{S} C$. Then $g \mapsto U^{k}(g, s)$ is a strongly continuous bounded representation of G for any fixed $s \in \boldsymbol{C}$. We put $e_{p}(\zeta)=\zeta^{-p}(p \in \boldsymbol{Z})$. Clearly $\left\{e_{p} ; p \in \boldsymbol{Z}\right\}$ forms a C.O.N.S. in \mathfrak{S}.

Let $\alpha_{p}^{k}(s)(-n+1 \leq k \leq n, p \in \boldsymbol{Z})$ be a rational function defined by $\alpha_{p}^{k}(s)$

$$
=\Gamma\left(\frac{1}{2}+\lambda_{k}+s\right) \Gamma\left(\frac{1}{2}+\lambda_{k}-s\right)^{-1} \Gamma\left(p+\frac{1}{2}+\lambda_{k}-s\right) \Gamma\left(p+\frac{1}{2}+\lambda_{k}+s\right)^{-1} .
$$

We can define for $\operatorname{Re} s \geq 0$ a bounded operator $A^{k}(s)$ on \mathscr{S} by $A^{k}(s) e_{p}$ $=\alpha_{p}^{k}(s) e_{p}$.

Lemma 1.

$A^{k}(s) U^{k}(g, s)=U^{k}(g,-s) A^{k}(s) \quad(g \in G, \operatorname{Re} s \geq 0)$.
Let $\mathscr{S}_{j}^{+}=\sum_{p \geq j}^{\oplus} \boldsymbol{C} e_{p}$ and $\mathfrak{S}_{j}^{-}=\sum_{p \leq-j}^{\oplus} \boldsymbol{C} e_{p}$. Then we have
Lemma 2. \mathfrak{S}_{j}^{e} is $U^{k}\left(\cdot, \varepsilon \lambda_{k}+j-\frac{1}{2}\right)$-invariant $(\varepsilon=+,-$ and $j=1$, $2, \cdots$.

Using Lemma 2, we can construct other representations $V^{ \pm}(\cdot, j)$ of G, which are unitary under certain inner product and irreducible (discrete series, except for $(\varepsilon, j)=(-, 1)$).
§2. Put $u_{p q}^{k}(g, s)=\left(U^{k}(g, s) e_{q}, e_{p}\right)$. Using Lemma 1, we have for any $s \in C, u_{p q}^{k}(g,-s)=\Lambda_{p q}^{k}(s) u_{p q}^{k}(g, s)$, where $\Lambda_{p q}^{k}(s)=\alpha_{p}^{k}(s) / \alpha_{q}^{k}(s)$. The matrix elements $v_{p q}^{k, \pm}(g, j)$ of $V^{ \pm}(\cdot, j)$ are given as follows: for " $p, q \geq j$
when $\varepsilon=+$ " or " $p, q \leq-j$ when $\varepsilon=-", v_{p q}^{k, \varepsilon}(g, j)=\omega_{p q}^{k, \varepsilon}(j) u_{p q}^{k}\left(g, \varepsilon \lambda_{k}+j\right.$ $\left.-\frac{1}{2}\right)$, where

$$
\omega_{p q}^{k, s}(j)=\prod_{0 \leq l \leq \varepsilon q-j-1}\left[\frac{l+2\left(j+\varepsilon \lambda_{k}\right)}{l+1}\right]^{1 / 2} \cdot \prod_{0 \leq l \leq \varepsilon p-j-1}\left[\frac{l+1}{l+2\left(j+\varepsilon \lambda_{k}\right)}\right]^{1 / 2} .
$$

For the sake of convenience, we put $\omega_{p q}^{k, s}(j)=0$ for any other triplet in the above definition.
§3. Let \mathscr{D}_{T} be a Fréchet space of functions f on G such that $f\left(u_{\varphi} a_{t} u_{\psi}\right)=0$ for $t \geq T$, which is topologized as usual. Let \mathscr{D}_{T}^{k} be a closed subspace of \mathscr{D}_{T} consisting of functions f such that $f\left(u_{2 \pi} g\right)=e^{i k \pi / n} f(g)$. Notice that $u_{2 \pi}$ is a generator of the center of G.

Lemma 3. $\mathscr{D}_{T}=\sum_{-n+1 \leq k \leq n} \mathscr{D}_{T}^{k}$.
The "Fourier transform" of $f \in \mathscr{D}_{T}^{k}$ is the operator-valued function $\mathscr{F}(s)=\int f(g) U^{k}(g, s) d g(s \in C)$. Let N be the set of all positive integers and put, according as $k \neq n$ or $k=n$ respectively,

$$
\begin{aligned}
N_{p q}^{k}= & \left\{\lambda_{k}+j-\frac{1}{2} ; j \in N \text { with } p<j \leq q\right\} \\
& \cup\left\{-\lambda_{k}+j-\frac{1}{2} ; j \in N \text { with } q \leq-j<p\right\}, \\
N_{p q}^{n}= & \{j ; j \in N \cup\{0\} \text { with } p<j \leq q\} \\
& \cup\{j ; j \in N \cup\{0\} \text { with } q \leq-j-1<p\} .
\end{aligned}
$$

Let \mathcal{A}_{T}^{k} be the totality of bounded operator-valued entire functions $\mathcal{F}(s)$ on C which satisfy the following:
(i) for every non-negative integer r, there exists a constant C_{r} such that $\|\mathscr{F}(s)\| \leq C_{r}(1+|s|)^{-r} e^{T \mid \text { Res } s \mid}$;
(ii) $\left(\mathscr{F}(-s) e_{q}, e_{p}\right)=\Lambda_{p q}^{k}(s)\left(\mathcal{F}(s) e_{q}, e_{p}\right)(p, q \in \boldsymbol{Z})$;
(iii) $\left(\mathscr{F}(s) e_{q}, e_{p}\right)=0$ for all $s \in N_{p q}^{k}$;
(iv) for every quintet β of non-negative integers $\beta=(a, b, c, r, M)$, define $|\mathscr{F}|_{\beta}$ as below. Then $|\mathscr{F}|_{\beta}<\infty$:

$$
\begin{aligned}
|\mathscr{F}|_{\beta}= & \sup _{p, q \in Z ; j \in N} \sup _{|\operatorname{Res}| \leq M}(1+|p|)^{a}(1+|q|)^{b}\left[(1+|s|)^{r}\left|\left(\mathscr{F}(s) e_{q}, e_{p}\right)\right|\right. \\
& \left.+j^{c} \sum_{\varepsilon=+,-} \omega_{p q}^{k, e}(j) \left\lvert\,\left(\mathscr{F}\left(\varepsilon \lambda_{k}+j-\frac{1}{2}\right) e_{q}, e_{p}\right)\right.\right] .
\end{aligned}
$$

Theorem. Let us topologize \mathcal{A}_{T}^{k} by means of the family of seminorms $|\mathcal{F}|_{\beta} . \quad$ Then the Fourier transform $\mathcal{I}: f \mapsto \mathscr{F}(\cdot)=\int f(g) U^{k}(g, \cdot) d g$ gives a topological isomorphism of \mathscr{D}_{T}^{k} onto \mathscr{H}_{T}^{k}.
§4. Outline of the proof of Theorem. We decompose $f \in \mathscr{D}_{T}^{k}$ into functions of different " K-type" for $K=\left\{u_{\theta} ; \theta \in \boldsymbol{R}\right\}$. Let $\mathscr{D}_{p q, T}^{k}$ be the closed subspace of functions h such that

$$
h\left(u_{\varphi} g u_{\psi}\right)=\exp \left(i\left(p+\lambda_{k}\right) \varphi\right) h(g) \exp \left(i\left(q+\lambda_{k}\right) \psi\right)
$$

Lemma 4. Let f be a C^{∞}-function on G such that $f\left(u_{2 \pi} g\right)$ $=e^{i k \pi / n} f(g)$. Then f can be decomposed as $f(g)=\sum_{p, q \in Z} f_{p q}(g) \quad$ (pointwise absolute convergence), where $f_{p q}$ satisfies (1).

In view of Lemma 4, we first investigate the case $f \in \mathscr{D}_{p q, T}^{k}$ separately. This turns out to study $\int f(g) u_{p q}^{k}(g, s) d g$. The case $\mathscr{D}_{00, T}^{k}$ is the most important, and the other cases can be reduced to this case in a similar way as in Part II of [1]. For the case of $\mathscr{D}_{00, T}^{k}$, we improve the method in Part I of [1], by giving an exact estimate of the growth of matrix elements at infinity. Once the Paley-Wiener type theorem for $\mathscr{D}_{p q, T}^{k}$ is established, our theorem follows by summing it up over p, q.

The details will be published elsewhere.

References

[1] Ehrenpreis, L., and Mautner, F. I.: Some properties of the Fourier transform on semi-simple Lie groups. I, II. Ann. of Math., 61, 406-439 (1955) ; Trans. Amer. Math. Soc., 84, 1-55 (1957).
[2] Pukanszky, L.: The Plancherel formula for the universal covering group of $S L(\boldsymbol{R}, 2)$. Math. Ann., 156, 96-143 (1964).
[3] Sally, P. J., Jr.: Intertwining operators and the representations of $S L$ (2, R). J. Funct. Anal., 6, 441-453 (1970).

