60. On the Least Positive Eigenvalue of the Laplacian for Riemannian Manifolds

By Hajime Urakawa
Department of Mathematics, Nagoya University
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1977)

§ 1. Preliminaries. Let M be an n-dimensional compact connected manifold. For a Riemannian metric g, let $-\Delta_{g}$ be the Laplacian associated to g acting on smooth functions on M. We may use the convention that the set of non-zero eigenvalues of Δ_{g} consists of the eigenvalues repeated a number of time equal to their multiplicities. For a fixed positive integer k, let $\lambda_{1}(g), \cdots, \lambda_{k}(g)$ be k eigenvalues chosen as small as possible. We consider the function Ξ_{k} on the space of smooth Riemannian metrics on M (cf. [1] p. 143):

$$
\Xi_{k}(g)=V_{\sigma}^{-2 / n} \sum_{i=1}^{k} \lambda_{i}(g)^{-1},
$$

where V_{g} is the volume of (M, g). For a fixed Riemannian metric g_{0}, let $m\left(g_{0}\right)$ be the multiplicity of the least positive eigenvalue $\lambda_{1}\left(g_{0}\right)$ of $\Delta_{g_{0}}$. The function $\Xi=\Xi_{m\left(g_{0}\right)}$ is called (cf. [1]) to be critical at g_{0} if

$$
\left[\frac{d}{d t} \Xi(g(t))\right]_{t=0}=0
$$

for every one-parameter family of Riemannian metrics $g(t), g(0)=g_{0}$, $|t|<\varepsilon$, depending real analytically on t.
§ 2. Statements of Results. Let K be a compact connected Lie group, K_{0} a closed subgroup of K and $M=K / K_{0}$ the quotient manifold. Let g_{0} be a K-invariant Riemannian metric on M. Then we have the following results:

Theorem 1. Let $M=K / K_{0}$ be as above. Suppose that the linear isotropy representation of K_{0} is irreducible over \boldsymbol{R}. Then the function Ξ is critical at the K-invariant metric g_{0}.

Theorem 2. Let $M=K / K_{0}$ be the compact homogeneous space of $\operatorname{dim} . M \geq 2$. In case of $\operatorname{dim} . M>2$, we assume the linear isotropy representation of K_{0} is irreducible over \boldsymbol{R}. Let g_{0} be a K-invariant metric on M. Then

$$
\Xi\left(\varphi g_{0}\right) \geq m\left(g_{0}\right)^{2 / n-1} E\left(g_{0}\right),
$$

for every positive valued smooth function φ on M such that $\left\langle\varphi^{n / 2}, \eta\right\rangle_{g_{0}}$ $=0$ for every $\eta \in \mathscr{F}$. Here $\langle\cdot, \cdot\rangle_{g_{0}}$ is the L_{2}-inner product on the space of smooth functions on M and \mathscr{F} is the $\lambda_{1}\left(g_{0}\right)$ eigenspace of $\Delta_{g_{0}}$.

Remark 1. The function $\varphi^{n / 2}$ in Theorem 2 is given as follows, for example: Let ψ be a smooth function orthogonal to \mathscr{F} with respect
to $\langle\cdot, \cdot\rangle_{g_{0}}$. Then $\left.\psi+c,(c\rangle \max .|\psi|\right)$ is a positive valued smooth function orthogonal to \mathscr{F} with respect to $\langle\cdot, \cdot\rangle_{g_{0}}$. We may put $\varphi^{n / 2}=\psi+c$, ($c>\max .|\psi|$).

Remark 2. These theorems have been obtained by M. Berger [1] in case of $M=S^{n}$.
§3. Proof of Theorem 1. Let $\left\{\varphi_{i}\right\}_{i=1}^{m\left(g_{0}\right)}$ be an orthonormal base of \mathscr{F} with respect to $\langle\cdot, \cdot\rangle_{g_{0}}$. It may be proved that they satisfy the Conditions 1 and 2 of Proposition 4.24 in [1] p. 143.

Condition 1. For $k \in K$, the translations $\left\{k \varphi_{i}\right\}_{i=1}^{m\left(g_{0}\right)}$ by k is also an orthonormal basis of \mathscr{F}. Then $\sum_{i=1}^{m\left(q_{0}\right)}\left(k \varphi_{i}\right)^{2}=\sum_{i=1}^{m\left(g_{0}\right)} \varphi_{i}^{2}$. Then the sum $\sum_{i=1}^{m\left(g_{0}\right)} \varphi_{i}^{2}$ is a constant function C on M by the homogenuity of K on M. Integrating over M, we have

$$
C V_{0}=\left\langle\sum_{i=1}^{m\left(g_{0}\right)} \varphi_{i}^{2}, 1\right\rangle_{g_{0}}=\sum_{i=1}^{m\left(g_{0}\right)}\left\|\varphi_{i}\right\|_{g_{0}}^{2}=m\left(g_{0}\right) .
$$

Here V_{0} is the volume of $\left(M, g_{0}\right)$.
Condition 2. Since the isotropy representation of K_{0} is irreducible, there exists a constant C^{\prime} such that

$$
\sum_{i=1}^{m\left(g_{0}\right)} d \varphi_{i} \circ d \varphi_{i}=C^{\prime} g_{0}
$$

Then we have

$$
\begin{gathered}
\int \operatorname{trace}_{g_{0}}\left(C^{\prime} g_{0}\right) v_{g_{0}}=C^{\prime} n=\int \operatorname{trace}_{g_{0}}\left(\sum_{i=1}^{m\left(y_{0}\right)} d \varphi_{i} \circ d \varphi_{i}\right) v_{g_{0}}=\sum_{i=1}^{m\left(g_{0}\right)}\left\|d \varphi_{i}\right\|_{g_{0}}^{2}, \\
\sum_{i=1}^{m\left(g_{0}\right)}\left\|d \varphi_{i}\right\|_{g_{0}}^{2}=\sum_{i=1}^{m\left(g_{0}\right)}\left\langle U_{g_{0}} \varphi_{i}, \varphi_{i}\right\rangle_{g_{0}}=\lambda_{1}\left(g_{0}\right) m\left(g_{0}\right),
\end{gathered}
$$

hence $C^{\prime}=m\left(g_{0}\right) \lambda_{1}\left(g_{0}\right) n^{-1} V_{0}^{-1}$.
Q.E.D.
§4. Proof of Theorem 2. Let $g=\varphi g_{0}$. Then

$$
\left.\langle 1, \eta\rangle_{g}=\left\langle\varphi^{n / 2}, \eta\right\rangle_{g_{0}}=0 \quad \text { (for every } \eta \in \mathscr{F}\right)
$$

Two inner products $\langle\cdot, \cdot\rangle_{g_{0}},\langle d \cdot, d \cdot\rangle_{g}$ can be defined on \mathscr{F}. There exists an orthonormal basis $\left\{\eta_{i}\right\}_{i=1}^{m\left(q_{0}\right)}$ of \mathscr{F} with respect to $\langle\cdot, \cdot\rangle_{g_{0}}$ such that $\left\langle d \eta_{i}, d \eta_{j}\right\rangle_{g}=0(i \neq j)$. Then under the assumption that $\langle 1, \eta\rangle_{g}=0(\eta \in \mathscr{F})$, the following inequality holds (cf. Hersch [3]) :
(1)

$$
\sum_{i=1}^{m\left(g_{0}\right)} \lambda_{i}(g)^{-1} \geqq \sum_{i=1}^{m\left(g_{0}\right)}\left\|\eta_{i}\right\|_{g}^{2} /\left\|d \eta_{i}\right\|_{g}^{2},
$$

for an orthogonal basis $\left\{\eta_{i}\right\}_{i=1}^{m\left(g_{0}\right)}$ of \mathscr{F} with respect to $\langle d \cdot, d \cdot\rangle_{g}$. By means of the choice of $\left\{\eta_{i}\right\}_{i=1}^{m\left(g_{0}\right)}$, we have $\sum_{i=1}^{m\left(g_{0}\right)} \eta_{i}^{2}=m\left(g_{0}\right) V_{0}^{-1}$ (cf. Proof of Theorem 1). Then

$$
\begin{equation*}
\sum_{i=1}^{m\left(g_{0}\right)}\left\|\eta_{i}\right\|_{g}^{2}=\sum_{i=1}^{m\left(q_{0}\right)} \int_{M} \eta_{i}^{2} v_{g}=m\left(g_{0}\right) V_{0}^{-1} V_{g} \tag{2}
\end{equation*}
$$

where v_{g} is the canonical measure associated to the metric g (cf. [2] p. 11).

In case of $n=\operatorname{dim} . M=2$, then

$$
\left\|d \eta_{i}\right\|_{g}^{2}=\left\|d \eta_{i}\right\|_{g_{0}}^{2}=\left\langle\Delta_{g_{0}} \eta_{i}, \eta_{i}\right\rangle_{g_{0}}=\lambda_{1}\left(g_{0}\right)
$$

by means of $|d \eta|_{g}=\varphi^{-1 / 2}|d \eta|_{g_{0}}$ where $\left|d_{\eta}\right|_{g}$ is the pointwise norm of 1 -form $d \eta$ with respect to the metric g, and $\int_{M} \eta v_{g}=\int_{M} \varphi \eta v_{0_{0}}\left(\eta \in C^{\infty}(M)\right)$. Hence, together with (1) and (2), we have

$$
\sum_{i=1}^{m(g)} \lambda_{i}(g)^{-1} \geqq m\left(g_{0}\right) \lambda_{1}\left(g_{0}\right)^{-1} V_{0}^{-1} V_{g}, \quad \text { that is } \quad \Xi(g) \geqq \Xi\left(g_{0}\right) .
$$

In case of dim. $M>2$, we assume the linear isotropy representation of K_{0} is irreducible over \boldsymbol{R}. Then

$$
\sum_{i=1}^{m\left(g_{0}\right)} d \eta_{i} \circ d \eta_{i}=\lambda_{1}\left(g_{0}\right) m\left(g_{0}\right) n^{-1} V_{0}^{-1} g_{0}
$$

(cf. Proof of Theorem 1), hence

$$
\left|d \eta_{i}\right|_{g_{0}}^{2} \leqq \sum_{i=1}^{m\left(g_{0}\right)}\left|d \eta_{i}\right|_{g_{0}}^{2}=\operatorname{trace}_{g_{0}}\left(\sum_{i=1}^{m\left(g_{0}\right)} d \eta_{i} \circ d \eta_{i}\right)=\lambda_{1}\left(g_{0}\right) m\left(g_{0}\right) V_{0}^{-1} .
$$

Therefore we have

$$
\begin{align*}
\int_{M}\left|d \eta_{i}\right|_{g_{0}}^{n} v_{g_{0}} & \equiv\left(\int_{M}\left|d \eta_{i}\right|_{g_{0}}^{2} v_{g_{0}}\right) m\left(g_{0}\right)^{(n-2) / 2} \lambda_{1}\left(g_{0}\right)^{(n-2) / 2} V_{0}^{-(n-2) / 2} \tag{3}\\
& =m\left(g_{0}\right)^{(n-2) / 2} \lambda_{1}\left(g_{0}\right)^{n / 2} V_{0}^{-(n-2) / 2},
\end{align*}
$$

by $\int_{M}\left|d \eta_{i}\right|_{g_{0}}^{2} v_{g_{0}}=\lambda_{1}\left(g_{0}\right)$. On the other hand,

$$
\begin{align*}
\left\|d \eta_{i}\right\|_{g}^{2} & =\int_{M}\left|d \eta_{i}\right|_{g}^{2} v_{g} \leq\left(\int_{M}\left(\left|d \eta_{i}\right|_{g}^{2}\right)^{n / 2} v_{g}\right)^{2 / n}\left(\int_{M} v_{g}\right)^{(n-2) / n} \tag{4}\\
& =V_{g}^{(n-2) / n}\left(\int_{M}\left|d \eta_{i}\right|_{g}^{n} v_{g}\right)^{2 / n} .
\end{align*}
$$

But, since $|d \eta|_{g}=\varphi^{-1 / 2}|d \eta|_{g_{0}}$ and $\int_{M} \eta v_{g}=\int_{M} \eta \varphi^{n / 2} v_{g_{0}}\left(\eta \in C^{\infty}(M)\right)$, we have

$$
\begin{equation*}
\int_{M}\left|d \eta_{i}\right|_{g}^{n} v_{g}=\int_{M}\left|d \eta_{i}\right|_{g_{0}}^{n} v_{g_{0}} . \tag{5}
\end{equation*}
$$

Together with (3), (4) and (5), we have

$$
\left\|d \eta_{i}\right\|_{g}^{2} \leqq m\left(g_{0}\right)^{(n-2) / n} \lambda_{1}\left(g_{0}\right) V_{0}^{-(n-2) / n} V_{g}^{(n-2) / n}
$$

Therefore from (1) and (2), we have

$$
\sum_{i=1}^{m\left(g_{0}\right)} \lambda_{i}(g)^{-1} \geqq m\left(g_{0}\right)^{2 / n} \lambda_{1}\left(g_{0}\right)^{-1} V_{0}^{-2 / n} V_{g}^{2 / n}
$$

that is,

$$
\boldsymbol{\Xi}(g) \geqq m\left(g_{0}\right)^{(2 / n-1)} \boldsymbol{\Xi}\left(g_{0}\right) .
$$

Q.E.D.

References

[1] Berger, M.: Sur les premières valeurs propres des variétés riemanniennes. Compos. Math., 26(2), 129-149 (1973).
[2] Berger, M., Gauduchon, P., and Mazet, E.: Le spectre d'une variété riemannienne. Springer, Lecture note, 194 (1971).
[3] Hersch, J.: Caractérisation variationnelle d'une somme de valeurs propres consécutives. C. R. A. S., 252, 1714-1716 (1961).

