58. Studies on Holonomic Quantum Fields. V

By Mikio SATO, Tetsuji MIWA, and Michio JIMBO Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1977)

This is a continuation of the series of our notes [1].

Here we shall give a summary of the theory of Clifford group. As for details see [2]. We remark that we have changed the definition of T_g and nr (g) which was given in [1].

1. Norms and rotations. Let W be an N dimensional vector space over C. We set $W^* = \operatorname{Hom}_{c}(W, C) = \{\eta \mid \eta : W \to C, w \mapsto \eta(w)\}$. Let $\Lambda(W) = \bigoplus_{\mu=0}^{N} \Lambda^{\mu}(W)$ denote the exterior algebra over W. We denote by δ the linear homomorphism $\delta : W^* \to \operatorname{End}_{c}(\Lambda(W)), \eta \mapsto \delta_{\eta}$ which satisfies $\delta_{\eta}(1) = 0$ and $\delta_{\eta}(wa) = \eta(w)a - w\delta_{\eta}(a)$ for $w \in W$ and $a \in \Lambda(W)$. Let κ be an element of $\operatorname{Hom}_{c}(W, W^*)$ such that $\iota = \kappa + {}^{t}\kappa$ is invertible. An orthogonal structure is introduced to W by the inner product $\langle w, w' \rangle$ $= \iota(w)(w') = \iota(w')(w)$. We denote by $\Lambda(W)$ the Clifford algebra over the orthogonal space W thus obtained.

There exists a unique linear isomorphism

(1.1) $\operatorname{Nr}_{\epsilon}: A(W) \to A(W), \quad a \mapsto \operatorname{Nr}_{\epsilon}(a)$ which satisfies $\operatorname{Nr}_{\epsilon}(1) = 1$ and (1.2) $\operatorname{Nr}_{\epsilon}(wa) = w \operatorname{Nr}_{\epsilon}(a) + \delta_{\epsilon(w)}(\operatorname{Nr}_{\epsilon}(a)).$

We call $\operatorname{Nr}_{\epsilon}(a)$ the κ -norm of a. The constant term of $\operatorname{Nr}_{\epsilon}(a)$ is called the κ -expectation value and is denoted by $\langle a \rangle_{\epsilon}$.

There exists a unique automorphism $a\mapsto \epsilon(a)$ (resp. anti-automorphism $a\mapsto a^*$) of A(W) characterized by $\epsilon(w) = -w$ (resp. $w^* = w$) for $w \in W$. We denote by G(W) the Clifford group $\{g \in A(W) | {}^3g^{-1} \in A(W), gW\epsilon(g)^{-1} = W\}$. We denote by T the group homomorphism $T: G(W) \rightarrow O(W), g\mapsto T_g$ defined by $T_g(w) = gw\epsilon(g)^{-1}$ for $w \in W$. Then we have the following exact sequence.

(1.3) $1 \longrightarrow \operatorname{GL}(1, \mathbb{C}) \xrightarrow{\operatorname{id.}} G(W) \xrightarrow{T} O(W) \longrightarrow 1.$ A group homomorphism $\operatorname{nr}: G(W) \longrightarrow \operatorname{GL}(1, \mathbb{C}), g \mapsto \operatorname{nr}(g)$ is defined by $\operatorname{nr}(g) = g\varepsilon(g)^*$, which is called the spinorial norm of g.

In what follows we shall adopt the following identifications: Hom_c $(W_1 \otimes_c W_2, C) \cong W_2^* \otimes_c W_1^* \cong \operatorname{Hom}_c (W_1, W_2^*).$

If $g \in G(W)$, we have

(1.4) $\langle g \rangle_{\kappa}^{2} = \operatorname{nr}(g) \operatorname{det}(\kappa T_{g} + {}^{t}\kappa)\iota^{-1}).$ If $\langle g \rangle_{\kappa} \neq 0$, we have (1.5) $\operatorname{Nr}_{\kappa}(g) = \langle g \rangle_{\kappa} \exp(\rho_{g}/2)$ with $\rho_g = (T_g - 1)(\kappa T_g + {}^t\kappa)^{-1} \in \Lambda^2(W) \subset W \otimes_c W \cong \operatorname{Hom}_c(W^*, W)$. If $\langle g \rangle_{\kappa}$ =0, then Ker $(\iota^{-\iota}\kappa + T_{q}\iota^{-\iota}\kappa) \neq 0$. Take a generic element w of W and Then the following conditions i) and ii) for $w_1 \in W$ are set g' = wg. equivalent;

- i) $(\ell^{-1t}\kappa + T_{a'}\ell^{-1}\kappa)(w_1) = 0,$ $\begin{cases} (\iota^{-1t}\kappa + T_g\iota^{-1}\kappa)(w_1) = 0, \\ \langle w, \iota^{-1t}\kappa(w_1) \rangle = 0. \end{cases}$

Moreover we have $\operatorname{Nr}_{\epsilon}(g) = w_1 \operatorname{Nr}_{\epsilon}(g')$, where w_1 is any element of W satisfying $(\iota^{-\iota}\kappa + T_{q}\iota^{-\iota}\kappa)(w_{1}) = 0$ and $\langle w, \iota^{-\iota}\kappa(w_{1}) \rangle = 1$. Thus the norm of g is of the following form.

 $\operatorname{Nr}_{k}(g) = cw_{1} \cdots w_{k} \exp(\rho_{q}/2)$ (1.6)

where $c \in C$, $\sum_{j=1}^{k} Cw_{j} = \text{Ker} (\iota^{-1t}\kappa + T_{g}\iota^{-1}\kappa)$ and $\rho_{g} \in \Lambda^{2}(W)$.

Conversely, assume that g is given by (1.6). We set $Nr_{e}(g_{1})$ $=c \exp(\rho_q/2), W_q = \sum_{j=1}^k C w_j$ and denote by i_q the natural inclusion $i_q: W_q \rightarrow W$. Then we have

 $\operatorname{nr}(g_1) = \langle g_1 \rangle_{\epsilon}^2 \det (1 + {}^t \kappa \rho_g).$ (1.7)

Now assume that nr $(g_1) \neq 0$. Then g_1 belongs to G(W) and we have $T_{a_1} = (1 - \rho_q \kappa)^{-1} (1 + \rho_q^t \kappa).$ (1.8)

Moreover we have

(1.9) $nr(g) = (\det_{(w_1, \dots, w_k)} {}^t i_g (1 - \kappa \rho_g)^{-1} \kappa i_g) nr(g_1).$

Here det_(w1,...,wk) $i_{i_g}(1-\kappa\rho_g)^{-1}\kappa i_g$ means the determinant of the matrix representation of ${}^{t}i_{g}(1-\kappa\rho_{g})^{-1}\kappa i_{g}$ with respect to the basis (w_{1}, \dots, w_{k}) and its dual basis. If nr $(g) \neq 0$, g belongs to G(W) and we have

 $T_{g} = T_{g_{1}} - (1 - \rho_{g}\kappa)^{-1}i_{g}[{}^{t}i_{g}(1 - \kappa\rho_{g})^{-1}\kappa i_{g}]^{-1}i_{g}(1 - \kappa\rho_{g})^{-1}i.$ (1.10)

2. The closure of G(W). Let G^k denote the subset $\{cw_1 \cdots w_k\}$ $\exp(\rho/2) | c \in C, w_1, \dots, w_k \in W$ and $\rho \in \Lambda^2(W) \}$ of $\Lambda(W)$, and set G $= \bigcup_{k=0}^{N} G^{k}$. We also set $\Lambda^{+}(W) = \bigoplus_{k \in \text{even}} \Lambda^{k}(W), \Lambda^{-}(W) = \bigoplus_{k \in \text{odd}} \Lambda^{k}(W)$ and $G^{\pm} = G \cap \Lambda^{\pm}(W).$

G is closed in $\Lambda(W)$. $P(G^{\pm}) = (G^{\pm} - \{0\})/\mathrm{GL}(1, \mathbb{C})$ is a non-singular projective variety in $P(\Lambda^{\pm}(W))$ of (1/2)N(N-1) dimensions. $\{P(G^k)\}$ $(k=0, 1, \dots, N)$ gives a stratification of P(G). $P(G^k)$ is a fiber bundle over $M_{N,k}(C)$ with the fiber $\Lambda^2(C^{N-k})$. Here we denote by $M_{N,k}(C)$ the Grassmann manifold consisting of k dimensional subspaces in C^{N} .

In particular, the closure $\overline{G}(W)$ of G(W) coincides with $\operatorname{Nr}_{k}^{-1}(\{cw_{1}\cdots w_{k} \exp(\rho/2) | c \in C, w_{1}, \cdots, w_{k} \in W, \rho \in \Lambda^{2}(W) \text{ and } k=0, 1,$ \cdots, N }).

Let κ_0 denote the linear homomorphism $\kappa_0: W \to W^*$ such that $2\kappa_0(w)(w') = \langle w, w' \rangle$. We denote by σ^{μ} the projection $A(W) \xrightarrow{\operatorname{Nr}_{s_0}} A(W)$ $= \bigoplus_{\nu=0}^{N} \Lambda^{\nu}(W) \xrightarrow{\text{projection}} \Lambda^{\mu}(W) \xrightarrow{\text{inclusion}} \Lambda(W) \xrightarrow{\operatorname{Nr}_{r_0}^{-1}} \Lambda(W). \text{ For an element}$ $a \in A(W)$ we define $\sigma_t(a) = \sum_{\mu=0}^{N} (1+t)^{(N-\mu)/2} (1-t)^{\mu/2} \sigma^{\mu}(a).$ (2.1)

If $g \in \overline{G}(W)$, $\sigma_t(g)$ belongs to $\overline{G}(W)$. If $g \in G(W)$, we have $\operatorname{nr} (\sigma_t(g)) \det T_g = \operatorname{nr} (g) \det (t + T_g).$ (2.2) $\sigma_t(g)$ belongs to G(W) if and only if det $(1+T_q t) \neq 0$, in which case we have

(2.3) $T_{g_t(g)} = (T_g + t)/(1 + T_g t).$

Note that setting t=1 we have

 $(\operatorname{trace} g)^2 \det T_g = \operatorname{nr} (g) \det (1 + T_g).$ (2.4)

We adopt the normalization of trace in A(W) so that trace $1=2^{N/2}$.

There is a one to one correspondence between κ satisfying $\kappa(w)(w')$ $+\kappa(w')(w) = \langle w, w' \rangle$ and $g \in \overline{G}(W)$ satisfying trace g=1. In fact, the correspondence is given by $\langle a \rangle_{\epsilon} = \text{trace } ga$.

3. Transformation law and product. Take a basis (v_1, \dots, v_N) of W and its dual basis (v_1^*, \dots, v_N^*) of W^* . We denote by K and J the matrix $(\langle v_{\mu}v_{\nu}\rangle)_{\mu,\nu=1,\dots,N}$ and $(\langle v_{\mu}, v_{\nu}\rangle)_{\mu,\nu=1,\dots,N}$, respectively. The matrix representations of κ and ι with respect to the above basis read ${}^{\iota}K$ and J, respectively.

Let $g \in \overline{G}(W)$ be given by $\operatorname{Nr}_{k}(g) = cw_{1} \cdots w_{k} \exp(\rho/2)$. Set

 $\mathbf{r} = \begin{pmatrix} \vdots & \vdots \\ c_{1,N} \cdots & c_{k,N} \end{pmatrix} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and set } R = (R_{\mu\nu})_{\mu,\nu=1,\dots,N} \text{ where } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{ and } w_j = \sum_{\mu=1}^N v_{\mu} c_{j,\mu}, \text{$

 $\rho = \sum_{\mu,\nu=1}^{N} R_{\mu\nu} v_{\mu} v_{\nu}$. Let e_{μ} denote the N component column vector $(\delta_{\mu\nu})_{\nu=1,\dots,N}.$

If we write $Nr_{\epsilon}(g) = \sum_{m=0}^{N} 1/m! \sum_{\mu_1,\dots,\mu_m=1}^{N} \rho_m(\mu_1,\dots,\mu_m) v_{\mu_m} \cdots v_{\mu_1}$, the coefficient $\rho_m(\mu_1, \dots, \mu_m)$ is given by

$$\rho_{m}(\mu_{1}, \dots, \mu_{m}) = \operatorname{Pfaffian} \begin{pmatrix} {}^{t}\boldsymbol{e} & \\ {}^{t}\boldsymbol{r} \end{pmatrix} \begin{pmatrix} -R & 1 \\ -1 & \end{pmatrix} \begin{pmatrix} \boldsymbol{e} & \\ \boldsymbol{r} \end{pmatrix}$$

$$(3.1) = (-1)^{(m+k)/2} \operatorname{Pfaffian} \left(\frac{ \left| \begin{array}{c} {}^{t}\boldsymbol{e} & \\ -\boldsymbol{e} & \\ -\boldsymbol{r} & -1 & R \end{array} \right| / \operatorname{Pfaffian} \begin{pmatrix} 1 \\ -1 & \end{pmatrix}$$

where $e = (e_{\mu_1}, \dots, e_{\mu_m})$.

Now let κ and κ' be such that $\kappa + {}^t\kappa = \kappa' + {}^t\kappa' = \iota$ and let K and K' be the corresponding matrices, respectively. We set Nr. (g_1) $=c \exp(\rho/2)$. Then we have

(3.2)
$$\langle g_1 \rangle_{\epsilon'} = \langle g_1 \rangle_{\epsilon} (\det (1 - (K' - K)R))^{1/2} \\ = \langle g_1 \rangle_{\epsilon} \operatorname{Pfaffian} \begin{pmatrix} -(K' - K) & 1 \\ -1 & R \end{pmatrix} / \operatorname{Pfaffian} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

If $\langle g_1 \rangle_{\kappa'} \neq 0$, we have

 $\operatorname{Nr}_{\epsilon'}(g_1) = \langle g_1 \rangle_{\epsilon'} \exp(\rho'/2)$ (3.3)where $\rho' = \sum_{\mu,\nu=1}^{N} R'_{\mu\nu} v_{\mu} v_{\nu}$ with $R' = R(1 - (K' - K)R)^{-1}$. Moreover if we write Nr_{*'} (g) = $\sum_{m=0}^{N} 1/m! \sum_{\mu_1,\dots,\mu_m=1}^{N} \rho'_m(\mu_1,\dots,\mu_m) v_{\mu_m} \cdots v_{\mu_1}$, the coefficient $\rho'_m(\mu_1, \dots, \mu_m)$ is given by

Next we shall give formulas for products of elements in $\overline{G}(W)$. If $w \in W$ and $\operatorname{Nr}_{\epsilon}(g) = cw_1 \cdots w_k \exp(\rho/2)$, we have

(3.5)
$$\operatorname{Nr}_{s}(wg) = c \left(\sum_{j=1}^{k} (-)^{j-1} w_{1} \cdots w_{j-1} \langle ww_{j} \rangle_{s} w_{j+1} \cdots w_{k} + \tilde{w} w_{1} \cdots w_{k} \right) \exp\left(\rho/2\right)$$

where $\tilde{w} = (1 - \rho \kappa)(w)$.

Let $W^{(\nu)}(\nu=1, \dots, n)$ be copies of W. Let Λ denote an $n \times n$ symmetric matrix $(\lambda_{\mu\nu})_{\mu,\nu=1,\dots,n}$ with $\lambda_{\nu\nu}=1$ $(\nu=1,\dots,n)$. Let $W(\Lambda)$ denote the vector space $\bigoplus_{\nu=1}^{n} W^{(\nu)}$ equipped with the inner product $\langle (w^{(1)}, \dots, w^{(n)}), (w'^{(1)}, \dots, w'^{(n)}) \rangle_{\Lambda} = \sum_{\mu,\nu=1}^{n} \lambda_{\mu\nu} \langle w^{(\mu)}, w'^{(\nu)} \rangle$. If det $\Lambda \neq 0$, $W(\Lambda)$ is an orthogonal space. Let κ_{Λ} denote an element of $\operatorname{Hom}_{c}(W(\Lambda), W(\Lambda)^{*})$ given by

 $\kappa_{A}((w^{(1)}, \dots, w^{(n)}))((w'^{(1)}, \dots, w'^{(n)})) = \sum_{\mu,\nu=1}^{n} \lambda_{\mu\nu}\kappa(w^{(\mu)})(w'^{(\nu)}).$ Let $g^{(\nu)}$ be an element of $\overline{G}(W^{(\nu)}) \subset \overline{G}(W(\Lambda))$ given by $\operatorname{Nr}_{\epsilon}(g^{(\nu)}) = c^{(\nu)}w_{1}^{(\nu)}$ $\dots w_{k}^{(\nu)} \exp(\rho^{(\nu)}/2)$, with $\rho^{(\nu)} = \sum_{j,l=1}^{n} R_{jl}^{(\nu)}v_{j}^{(\nu)}v_{l}^{(\nu)}$. We set $\operatorname{Nr}_{\epsilon}(g_{1}^{(\nu)})$ $= c^{(\nu)} \exp(\rho^{(\nu)}/2)$. Let $c_{j}^{(\nu)}$ denote the column vector ${}^{t}(c_{j,1}^{(\nu)}, \dots, c_{j,N}^{(\nu)})$ where $w_{j}^{(\nu)} = \sum_{m=1}^{N} v_{m}^{(\nu)}c_{j,m}^{(\nu)}$, and let r be an $\operatorname{Nn} \times k$ matrix $\begin{pmatrix} c_{1}^{(1)} \cdots c_{k}^{(1)} \\ \vdots \\ c_{1}^{(m)} \cdots c_{k}^{(m)} \end{pmatrix}$,

where $k = \sum_{\mu=1}^{n} k^{(\mu)}$. Let $(\hat{v}_1, \dots, \hat{v}_{Nn})$ denote the basis $(v_1^{(1)}, \dots, v_N^{(1)}, \dots, v_N^{(1)}, \dots, v_N^{(n)})$ and let $\hat{e}_1, \dots, \hat{e}_{Nn}$ denote the Nn component column

 $Nn \times Nn$ skew-symmetric matrix

$$\begin{pmatrix} R^{(1)} & & \\ & \ddots & \\ & & R^{(n)} \end{pmatrix} \text{ and } \begin{pmatrix} 0 & \lambda_{12}K & \cdots & \lambda_{1n}K \\ -\lambda_{21}{}^{t}K & 0 & \vdots \\ \vdots & \ddots & \ddots \\ -\lambda_{n1}{}^{t}K & \cdots & -\lambda_{nn-1}{}^{t}K & 0 \end{pmatrix}, \text{ respectively. Then}$$

we have

If $\langle g_1^{(1)} \cdots g_1^{(n)} \rangle_{\epsilon_d} \neq 0$, we have

No. 7]

(3.7)
$$\begin{split} & \operatorname{Nr}_{\epsilon_{A}}\left(g_{1}^{(1)}\cdots g_{1}^{(n)}\right) = \langle g_{1}^{(1)}\cdots g_{1}^{(n)}\rangle_{\epsilon_{A}}\exp\left(\rho(\Lambda)/2\right) \\ & \operatorname{where} \rho(\Lambda) = \sum_{\mu,\nu=1}^{Nn} R(\Lambda)_{\mu\nu} \hat{v}_{\mu} \hat{v}_{\nu} \text{ with } R(\Lambda) = R(1-A(\Lambda)R)^{-1}. \quad \text{If we write} \\ & \operatorname{Nr}_{\epsilon_{A}}\left(g^{(1)}\cdots g^{(n)}\right) = \sum_{m=0}^{Nn} 1/m! \sum_{\mu_{1},\dots,\mu_{m}=1}^{Nn} \rho_{m}(\mu_{1},\dots,\mu_{m}) \hat{v}_{\mu_{m}}\cdots \hat{v}_{\mu_{1}}, \text{ the co-efficient } \rho_{m}(\mu_{1},\dots,\mu_{m}) \text{ is given by} \end{split}$$

(3.8)
$$\rho_m(\mu_1, \dots, \mu_m) = (-)^{(m+k)/2} \langle g_1^{(1)} \rangle_{\kappa} \dots \langle g_1^{(n)} \rangle_{\kappa} \left[\begin{array}{c} & e \\ \hline -e \\ -r \\ -1 \\ R \end{array} \right]$$

where $\boldsymbol{e} = (e_{\mu_1}, \dots, e_{\mu_m})$. If $\langle g^{(1)} \dots g^{(n)} \rangle_{\boldsymbol{\epsilon}_A} \neq 0$, we have $\rho_m(\mu_1, \dots, \mu_m) = \langle g^{(1)} \dots g^{(n)} \rangle_{\boldsymbol{\epsilon}_A}$

(3.9)
$$\times \operatorname{Pfaffian} \begin{pmatrix} {}^{\iota}\boldsymbol{e} \\ {}^{\iota}\boldsymbol{r} \end{pmatrix} \begin{pmatrix} -R(1-A(\Lambda)R)^{-1} & (1-RA(\Lambda))^{-1} \\ -(1-A(\Lambda)R)^{-1} & (1-A(\Lambda)R)^{-1}A(\Lambda) \end{pmatrix} \begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{r} \end{pmatrix}.$$

4. The extended Clifford group. Since we have not expounded this subject in [2], here we shall explain it in detail.

Let us consider the orthogonal space $C \oplus W$ equipped with the inner product $\langle c+w, c'+w' \rangle = -\{(c+w)\varepsilon(c'+w')+(c'+w')\varepsilon(c+w)\}$ = $-2cc'+\langle w,w' \rangle$. Let $G_{\text{ext}}(W)$ denote the extended Clifford group $\{g \in A(W) | \exists \varepsilon(g)^{-1}, g(C \oplus W)\varepsilon(g)^{-1} = C \oplus W\}$. We denote by T_g the linear transformation of $C \oplus W$ induced by $g, T_g: c+w \mapsto g(c+w)\varepsilon(g)^{-1}$. $c+w \in C \oplus W$ belongs to $G_{\text{ext}}(W)$ if and only if $-c^2+w^2 \neq 0$, and we have (4.1) $T_{c+w}(c'+w') = -(c'-w') + \{(-2cc'-\langle w,w' \rangle)/(-c^2+w^2)\}(c+w)$.

If we denote by \hat{T}_{c+w} the reflection in $C \oplus W$ with respect to the hyperplane $\{c'+w' \in C \oplus W | \langle c+w, c'+w' \rangle = 0\}$, then (4.1) reads (4.2) $T_{c+w} = -\hat{T}_{c+w} \circ \varepsilon = -\varepsilon \circ \hat{T}_{c-w}$.

This implies that any element of $G_{\text{ext}}(W)$ is of the form $(c_1+w_1)\cdots$ (c_k+w_k) with $c_j+w_j \in (C+W) \cap G_{\text{ext}}(W)$. The following exact sequence is valid

$$(4.3) 1 \rightarrow \operatorname{GL}(1, \mathbb{C}) \rightarrow G_{\operatorname{ext}}(W) \rightarrow \operatorname{SO}(\mathbb{C} \oplus W) \rightarrow 1.$$

Let $W_{ext} = Cw_0 \oplus W$ be an orthogonal space, where w_0 satisfies the following: $w_0^2 = -1$, $\langle w, w_0 \rangle = 0$ for any $w \in W$. The theory of the extended Clifford group is reduced to that of $G^+(W_{ext}) = \{g \in G(W_{ext}) | \varepsilon(g) = g\}$. Firstly $F_{c \oplus W} : C \oplus W \to W_{ext}, c + w \mapsto cw_0 + w$ is an isomorphism. We also denote by $F_{A(W)}$ the isomorphism $A(W) \to A^+(W_{ext}), a^+ + a^- \mapsto a^+ + w_0 a^-$. Note that $F_{c \oplus W}(c + w) = F_{A(W)}(c + w)w_0$. We have $F_{A(W)}(\varepsilon(a)^*) = \varepsilon(F_{A(W)}(a))^*$ and $\operatorname{nr}(g) = g\varepsilon(g)^* = \operatorname{nr}(F_{A(W)}(g))$ for $g \in G_{ext}(W)$. Moreover we have for $g \in G_{ext}(W)$ (4.4) $F_{c \oplus W} \circ T_g = T_{F_{A(W)}(g)} \circ F_{c \oplus W}$, and the exact sequence (4.3) isomorphically is transformed into

(4.5) $1 \rightarrow \operatorname{GL}(1, \mathbb{C}) \rightarrow G^+(W_{\text{ext}}) \rightarrow \operatorname{SO}(W_{\text{ext}}) \rightarrow 1.$

Let κ be an element of $\operatorname{Hom}_{\mathcal{C}}(W, W^*)$, and define $\kappa_{\operatorname{ext}} \in \operatorname{Hom}_{\mathcal{C}}(W_{\operatorname{ext}}, W_{\operatorname{ext}}^*)$ by $\langle ww' \rangle_{\kappa_{\operatorname{ext}}} = \langle ww' \rangle_{\kappa}, \langle ww_0 \rangle_{\kappa_{\operatorname{ext}}} = 0$ for $w, w' \in W$. If we denote by

 $\begin{array}{l} F_{A(W)} \text{ the isomorphism } \Lambda(W) \rightarrow \Lambda^+(W_{\text{ext}}), \ a^+ + a^- \mapsto a^+ + w_0 a^-, \text{ then we have} \\ (4.6) \qquad \qquad F_{A(W)} \circ \operatorname{Nr}_{\epsilon} = \operatorname{Nr}_{\epsilon_{\text{ext}}} \circ F_{A(W)}. \end{array}$

(4.4) and (4.6) provide us with a means to compute the norm of an element of $G_{\text{ext}}(W)$ and the rotation it induces in $C \oplus W$ from each other. In particular, the closure $\overline{G}_{\text{ext}}(W)$ coincides with $\operatorname{Nr}_{\epsilon}^{-1}(\{cw_1 \cdots w_k \\ \cdot \exp(\rho/2 + w) | c \in C, w_1, \cdots, w_k, w \in W, \rho \in \Lambda^2(W)\}).$

References

- [1] Sato, M., Miwa, T., and Jimbo, M.: Proc. Japan Acad., 53A, 6-10, 147-152, 153-158, 183-185 (1977).
- [2] ——: RIMS preprint 234 (1977).