58. Studies on Holonomic Quantum Fields. V

By Mikio Sato, Tetsuji Miwa, and Michio Jimbo
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1977)

This is a continuation of the series of our notes [1].
Here we shall give a summary of the theory of Clifford group. As for details see [2]. We remark that we have changed the definition of T_{g} and $\mathrm{nr}(g)$ which was given in [1].

1. Norms and rotations. Let W be an N dimensional vector space over \boldsymbol{C}. We set $W^{*}=\operatorname{Hom}_{\boldsymbol{C}}(W, \boldsymbol{C})=\{\eta \mid \eta: W \rightarrow \boldsymbol{C}, w \mapsto \eta(w)\}$. Let $\Lambda(W)=\oplus_{\mu=0}^{N} \Lambda^{\mu}(W)$ denote the exterior algebra over W. We denote by δ the linear homomorphism $\delta: W^{*} \rightarrow \operatorname{End}_{C}(\Lambda(W)), \eta \mapsto \delta_{\eta}$ which satisfies $\delta_{\eta}(1)=0$ and $\delta_{\eta}(w a)=\eta(w) a-w \delta_{\eta}(a)$ for $w \in W$ and $a \in \Lambda(W)$. Let κ be an element of $\operatorname{Hom}_{C}\left(W, W^{*}\right)$ such that $\underset{\text { def }}{=} \kappa+{ }^{t} \kappa$ is invertible. An orthogonal structure is introduced to W by the inner product $\left\langle w, w^{\prime}\right\rangle$ $=\iota(w)\left(w^{\prime}\right)=\iota\left(w^{\prime}\right)(w)$. We denote by $A(W)$ the Clifford algebra over the orthogonal space W thus obtained.

There exists a unique linear isomorphism
(1.1) $\quad \mathrm{Nr}_{\varepsilon}: A(W) \rightarrow \Lambda(W), \quad a \mapsto \mathrm{Nr}_{s}(a)$
which satisfies $\mathrm{Nr}_{\varepsilon}(1)=1$ and
(1.2)

$$
\mathrm{Nr}_{k}(w a)=w \mathrm{Nr}_{k}(a)+\delta_{k(w)}\left(\mathrm{Nr}_{k}(a)\right)
$$

We call $\mathrm{Nr}_{s}(a)$ the κ-norm of a. The constant term of $\mathrm{Nr}_{\kappa}(a)$ is called the κ-expectation value and is denoted by $\langle a\rangle_{r}$.

There exists a unique automorphism $a \mapsto \varepsilon(a)$ (resp. anti-automorphism $a \mapsto a^{*}$) of $A(W)$ characterized by $\varepsilon(w)=-w$ (resp. $w^{*}=w$) for $w \in W$. We denote by $G(W)$ the Clifford group $\left\{\left.g \in A(W)\right|^{3} g^{-1} \in A(W)\right.$, $\left.g W \varepsilon(g)^{-1}=W\right\}$. We denote by T the group homomorphism $T: G(W)$ $\rightarrow O(W), g \mapsto T_{g}$ defined by $T_{g}(w)=g w \varepsilon(g)^{-1}$ for $w \in W$. Then we have the following exact sequence.

$$
\begin{equation*}
1 \longrightarrow \mathrm{GL}(1, C) \xrightarrow{\mathrm{id.}} G(W) \xrightarrow{T} O(W) \longrightarrow 1 . \tag{1.3}
\end{equation*}
$$

A group homomorphism $\mathrm{nr}: G(W) \rightarrow \mathrm{GL}(1, C), g_{\mapsto} \rightarrow \mathrm{nr}(g)$ is defined by $\mathrm{nr}(g)=g_{\varepsilon}(g)^{*}$, which is called the spinorial norm of g.

In what follows we shall adopt the following identifications: $\operatorname{Hom}_{C}\left(W_{1} \otimes_{C} W_{2}, \boldsymbol{C}\right) \cong W_{2}^{*} \otimes_{\boldsymbol{C}} W_{1}^{*} \cong \operatorname{Hom}_{C}\left(W_{1}, W_{2}^{*}\right)$.

If $g \in G(W)$, we have

$$
\begin{equation*}
\langle g\rangle_{k}^{2}=\mathrm{nr}(g) \operatorname{det}\left(\left(\kappa T_{g}+{ }^{t} \kappa\right) \iota^{-1}\right) . \tag{1.4}
\end{equation*}
$$

If $\langle g\rangle_{k} \neq 0$, we have

$$
\begin{equation*}
\mathrm{Nr}_{k}(g)=\langle g\rangle_{k} \exp \left(\rho_{g} / 2\right) \tag{1.5}
\end{equation*}
$$

with $\rho_{g}=\left(T_{g}-1\right)\left(\kappa T_{g}+{ }^{t} \kappa\right)^{-1} \in \Lambda^{2}(W) \subset W \otimes_{c} W \cong \operatorname{Hom}_{c}\left(W^{*}, W\right)$. If $\langle g\rangle_{{ }_{c}}$ $=0$, then $\operatorname{Ker}\left(\iota^{-1 t} \kappa+T_{g} \iota^{-1} \kappa\right) \neq 0$. Take a generic element w of W and set $g^{\prime}=w g$. Then the following conditions i) and ii) for $w_{1} \in W$ are equivalent;
i) $\left(c^{-1 t} \kappa+T_{g^{\prime} \iota^{-1}} \kappa\right)\left(w_{1}\right)=0$,
ii) $\left\{\begin{array}{l}\left(c^{-1 t} \kappa+T_{g} c^{-1} \kappa\right)\left(w_{1}\right)=0, \\ \left\langle w, c^{-1 t} \kappa\left(w_{1}\right)\right\rangle=0 .\end{array}\right.$

Moreover we have $\mathrm{Nr}_{\varepsilon}(g)=w_{1} \mathrm{Nr}_{\varepsilon}\left(g^{\prime}\right)$, where w_{1} is any element of W satisfying $\left(\epsilon^{-1 t} \kappa+T_{g^{\prime}} \iota^{-1} \kappa\right)\left(w_{1}\right)=0$ and $\left\langle w, \iota^{-1 t} \kappa\left(w_{1}\right)\right\rangle=1$. Thus the norm of g is of the following form.

$$
\begin{equation*}
\mathrm{Nr}_{s}(g)=c w_{1} \cdots w_{k} \exp \left(\rho_{g} / 2\right) \tag{1.6}
\end{equation*}
$$

where $c \in \boldsymbol{C}, \sum_{j=1}^{k} \boldsymbol{C} w_{j}=\operatorname{Ker}\left(\epsilon^{-1 t} \kappa+T_{\left.g^{\prime} \iota^{-1} \kappa\right)}\right)$ and $\rho_{g} \in \Lambda^{2}(W)$.
Conversely, assume that g is given by (1.6). We set $\mathrm{Nr}_{s}\left(g_{1}\right)$ $=c \exp \left(\rho_{g} / 2\right), W_{g}=\sum_{j=1}^{k} C w_{j}$ and denote by i_{g} the natural inclusion $i_{g}: W_{g} \rightarrow W$. Then we have
(1.7)

$$
\mathrm{nr}\left(g_{1}\right)=\left\langle g_{1}\right\rangle_{k}^{2} \operatorname{det}\left(1+{ }^{t} \kappa \rho_{g}\right) .
$$

Now assume that $\mathrm{nr}\left(g_{1}\right) \neq 0$. Then g_{1} belongs to $G(W)$ and we have

$$
\begin{equation*}
T_{g_{1}}=\left(1-\rho_{g} k\right)^{-1}\left(1+\rho_{g}{ }^{t} \kappa\right) \tag{1.8}
\end{equation*}
$$

Moreover we have

$$
\begin{equation*}
\operatorname{nr}(g)=\left(\operatorname{det}_{\left(w_{1}, \cdots, w_{k)}\right.} i_{g}\left(1-\kappa \rho_{g}\right)^{-1} \kappa i_{g}\right) \operatorname{nr}\left(g_{1}\right) . \tag{1.9}
\end{equation*}
$$

Here $\operatorname{det}_{\left(w_{1}, \cdots, w_{k}\right)}{ }^{t} i_{g}\left(1-\kappa \rho_{g}\right)^{-1} \kappa i_{g}$ means the determinant of the matrix representation of ${ }^{t} i_{g}\left(1-\kappa \rho_{g}\right)^{-1} \kappa i_{g}$ with respect to the basis $\left(w_{1}, \cdots, w_{k}\right)$ and its dual basis. If $\mathrm{nr}(g) \neq 0, g$ belongs to $G(W)$ and we have

$$
\begin{equation*}
T_{g}=T_{g_{1}}-\left(1-\rho_{g} \kappa\right)^{-1} i_{g}\left[t i_{g}\left(1-\kappa \rho_{g}\right)^{-1} \kappa i_{g}\right]^{-1 t} i_{g}\left(1-\kappa \rho_{g}\right)^{-1} \iota . \tag{1.10}
\end{equation*}
$$

2. The closure of $\boldsymbol{G}(\boldsymbol{W})$. Let G^{k} denote the subset $\left\{c w_{1} \cdots w_{k}\right.$ $\exp (\rho / 2) \mid c \in C, w_{1}, \cdots, w_{k} \in W$ and $\left.\rho \in \Lambda^{2}(W)\right\}$ of $\Lambda(W)$, and set G $=\bigcup_{k=0}^{N} G^{k}$. We also set $\Lambda^{+}(W)=\underset{k: \text { :ven }}{\oplus} \Lambda^{k}(W), \Lambda^{-}(W)=\underset{k: \text { odd }}{\oplus} \Lambda^{k}(W)$ and $G^{ \pm}=G \cap \Lambda^{ \pm}(W)$.
G is closed in $\Lambda(W) . \quad P\left(G^{ \pm}\right)=\left(G^{ \pm}-\{0\}\right) / G L(1, C)$ is a non-singular projective variety in $P\left(\Lambda^{ \pm}(W)\right)$ of (1/2)N(N-1) dimensions. $\left\{P\left(G^{k}\right)\right\}$ $(k=0,1, \cdots, N)$ gives a stratification of $P(G) . \quad P\left(G^{k}\right)$ is a fiber bundle over $M_{N, k}(\boldsymbol{C})$ with the fiber $\Lambda^{2}\left(C^{N-k}\right)$. Here we denote by $M_{N, k}(\boldsymbol{C})$ the Grassmann manifold consisting of k dimensional subspaces in C^{N}.

In particular, the closure $\bar{G}(W)$ of $G(W)$ coincides with $\mathrm{Nr}_{k}^{-1}\left(\left\{c w_{1} \cdots w_{k} \exp (\rho / 2) \mid c \in C, w_{1}, \cdots, w_{k} \in W, \rho \in \Lambda^{2}(W)\right.\right.$ and $k=0,1$, $\cdots, N\}$).

Let κ_{0} denote the linear homomorphism $\kappa_{0}: W \rightarrow W^{*}$ such that $2 \kappa_{0}(w)\left(w^{\prime}\right)=\left\langle w, w^{\prime}\right\rangle$. We denote by σ^{μ} the projection $A(W) \xrightarrow{\mathrm{Nr}_{k_{0}}} \Lambda(W)$ $=\oplus_{\nu=0}^{N} \Lambda^{\nu}(W) \xrightarrow{\text { projection }} \Lambda^{\mu}(W) \xrightarrow{\text { inclusion }} \Lambda(W) \xrightarrow{\mathrm{Nr}_{\mathrm{k}_{0}}^{-1}} A(W)$. For an element $a \in A(W)$ we define

$$
\begin{equation*}
\sigma_{t}(a)=\sum_{\mu=0}^{N}(1+t)^{(N-\mu) / 2}(1-t)^{\mu / 2} \sigma^{\mu}(a) . \tag{2.1}
\end{equation*}
$$

If $g \in \bar{G}(W), \sigma_{t}(g)$ belongs to $\bar{G}(W)$. If $g \in G(W)$, we have
$\mathrm{nr}\left(\sigma_{t}(g)\right) \operatorname{det} T_{g}=\mathrm{nr}(g) \operatorname{det}\left(t+T_{g}\right)$.
$\sigma_{t}(g)$ belongs to $G(W)$ if and only if $\operatorname{det}\left(1+T_{g} t\right) \neq 0$, in which case we have
(2.3)

$$
T_{o_{t}(g)}=\left(T_{g}+t\right) /\left(1+T_{g} t\right) .
$$

Note that setting $t=1$ we have
(2.4) $\quad(\operatorname{trace} g)^{2} \operatorname{det} T_{g}=\mathrm{nr}(g) \operatorname{det}\left(1+T_{g}\right)$.

We adopt the normalization of trace in $A(W)$ so that trace $1=2^{N / 2}$.
There is a one to one correspondence between κ satisfying $\kappa(w)\left(w^{\prime}\right)$ $+\kappa\left(w^{\prime}\right)(w)=\left\langle w, w^{\prime}\right\rangle$ and $g \in \bar{G}(W)$ satisfying trace $g=1$. In fact, the correspondence is given by $\langle a\rangle_{k}=$ trace $g a$.
3. Transformation law and product. Take a basis $\left(v_{1}, \cdots, v_{N}\right)$ of W and its dual basis $\left(v_{1}^{*}, \cdots, v_{N}^{*}\right)$ of W^{*}. We denote by K and J the matrix $\left(\left\langle v_{\mu} v_{\nu}\right\rangle\right)_{\mu, \nu=1, \ldots, N}$ and $\left(\left\langle v_{\mu}, v_{\nu}\right\rangle\right)_{\mu, \nu=1, \ldots, N}$, respectively. The matrix representations of κ and ι with respect to the above basis read ${ }^{t} K$ and J, respectively.

Let $g \in \bar{G}(W)$ be given by $\mathrm{Nr}_{r}(g)=c w_{1} \cdots w_{k} \exp (\rho / 2)$. Set $\boldsymbol{r}=\left(\begin{array}{cc}c_{1,1} \cdots c_{k, 1} \\ \vdots & \vdots \\ c_{1, N} \cdots c_{k, N}\end{array}\right)$ where $w_{j}=\sum_{\mu=1}^{N} v_{\mu} c_{j, \mu}$, and set $R=\left(R_{\mu \nu}\right)_{\mu, v=1, \cdots, N}$ where $\rho=\sum_{\mu, \nu=1}^{N} R_{\mu \nu} v_{\mu} v_{\nu}$. Let e_{μ} denote the N component column vector $\left(\delta_{\mu \nu}\right)_{\nu=1, \ldots, N}$.

If we write $\operatorname{Nr}_{\varepsilon}(g)=\sum_{m=0}^{N} 1 / m!\sum_{\mu_{1}, \ldots, \mu_{m}=1}^{N} \rho_{m}\left(\mu_{1}, \cdots, \mu_{m}\right) v_{\mu_{m}} \cdots v_{\mu_{1}}$, the coefficient $\rho_{m}\left(\mu_{1}, \cdots, \mu_{m}\right)$ is given by

$$
\rho_{m}\left(\mu_{1}, \cdots, \mu_{m}\right)=\operatorname{Pfaffian}\left(\begin{array}{cc}
\boldsymbol{t}^{\boldsymbol{e}} & \tag{3.1}\\
& \\
& t_{\boldsymbol{r}}
\end{array}\right)\left(\begin{array}{ll}
-R & 1 \\
-1 &
\end{array}\right)\left(\begin{array}{ll}
\boldsymbol{e} & \\
& \boldsymbol{r}
\end{array}\right)
$$

where $e=\left(e_{\mu_{1}}, \cdots, e_{\mu_{m}}\right)$.
Now let κ and κ^{\prime} be such that $\kappa+{ }^{t} \kappa=\kappa^{\prime}+{ }^{t} \kappa^{\prime}=\iota$ and let K and K^{\prime} be the corresponding matrices, respectively. We set $\mathrm{Nr}_{s}\left(g_{1}\right)$ $=c \exp (\rho / 2)$. Then we have

$$
\begin{aligned}
\left\langle g_{1}\right\rangle_{k^{\prime}} & =\left\langle g_{1}\right\rangle_{s}\left(\operatorname{det}\left(1-\left(K^{\prime}-K\right) R\right)\right)^{1 / 2} \\
& =\left\langle g_{1}\right\rangle_{s} \operatorname{Pfaffian}\left(\begin{array}{cc}
-\left(K^{\prime}-K\right) & 1 \\
-1 & R
\end{array}\right) / \operatorname{Pfaffian}\left(\begin{array}{cc}
& 1 \\
-1 &
\end{array}\right) .
\end{aligned}
$$

If $\left\langle g_{1}\right\rangle_{k^{\prime}} \neq 0$, we have

$$
\begin{equation*}
\mathrm{Nr}_{k^{\prime}}\left(g_{1}\right)=\left\langle g_{1}\right\rangle_{x^{\prime}} \exp \left(\rho^{\prime} / \mathbf{2}\right) \tag{3.3}
\end{equation*}
$$

where $\rho^{\prime}=\sum_{\mu, \nu=1}^{N} R_{\mu \nu}^{\prime} v_{\mu} v_{\nu}$ with $R^{\prime}=R\left(1-\left(K^{\prime}-K\right) R\right)^{-1}$. Moreover if we write $\mathrm{Nr}_{s^{\prime}}(g)=\sum_{m=0}^{N} 1 / m!\sum_{\mu_{1}, \ldots, \mu_{m}=1}^{N} \rho_{m}^{\prime}\left(\mu_{1}, \cdots, \mu_{m}\right) v_{\mu_{m}} \cdots v_{\mu_{1}}$, the coefficient $\rho_{m}^{\prime}\left(\mu_{1}, \cdots, \mu_{m}\right)$ is given by

$$
\begin{equation*}
\rho_{m}^{\prime}\left(\mu_{1}, \cdots, \mu_{m}\right)=(-)^{(m+k) / 2}\langle g\rangle_{x} \tag{3.4}
\end{equation*}
$$

Next we shall give formulas for products of elements in $\bar{G}(W)$. If $w \in W$ and $\mathrm{Nr}_{s}(g)=c w_{1} \cdots w_{k} \exp (\rho / 2)$, we have

$$
\begin{gather*}
\mathrm{Nr}_{s}(w g)=c\left(\sum_{j=1}^{k}(-)^{j-1} w_{1} \cdots w_{j-1}\left\langle w w_{j}\right\rangle_{k} w_{j+1} \cdots w_{k}\right. \tag{3.5}\\
\left.+\tilde{w} w_{1} \cdots w_{k}\right) \exp (\rho / 2)
\end{gather*}
$$

where $\tilde{w}=(1-\rho \kappa)(w)$.
Let $W^{(\nu)}(\nu=1, \cdots, n)$ be copies of W. Let Λ denote an $n \times n$ symmetric matrix $\left(\lambda_{\mu \nu}\right)_{\mu, \nu=1, \cdots, n}$ with $\lambda_{\nu \nu}=1(\nu=1, \cdots, n)$. Let $W(\Lambda)$ denote the vector space $\oplus_{\nu=1}^{n} W^{(\nu)}$ equipped with the inner product $\left\langle\left(w^{(1)}, \cdots\right.\right.$, $\left.\left.w^{(n)}\right),\left(w^{\prime(1)}, \cdots, w^{\prime(n)}\right)\right\rangle_{\Lambda}=\sum_{\mu, \nu=1}^{n} \lambda_{\mu \nu}\left\langle w^{(\mu)}, w^{\prime(\nu)}\right\rangle$. If $\operatorname{det} \Lambda \neq 0, W(\Lambda)$ is an orthogonal space. Let κ_{A} denote an element of $\operatorname{Hom}_{c}\left(W(\Lambda), W(\Lambda)^{*}\right)$ given by

$$
\kappa_{A}\left(\left(w^{(1)}, \cdots, w^{(n)}\right)\right)\left(\left(w^{\prime(1)}, \cdots, w^{\prime(n)}\right)\right)=\sum_{\mu, \nu=1}^{n} \lambda_{\mu \nu} \kappa\left(w^{(\mu)}\right)\left(w^{\prime(\nu)}\right) .
$$

Let $g^{(\nu)}$ be an element of $\bar{G}\left(W^{(\nu)}\right) \subset \bar{G}(W(\Lambda))$ given by $\mathrm{Nr}_{\varepsilon}\left(g^{(\nu)}\right)=c^{(\nu)} w_{1}^{(\nu)}$ $\cdots w_{k}^{(\nu)} \exp \left(\rho^{(\nu)} / 2\right)$, with $\rho^{(\nu)}=\sum_{j, l=1}^{n} R_{j l}^{(\nu)} v_{j}^{(\nu)} v_{l}^{(\nu)}$. We set $\mathrm{Nr}_{\varepsilon}\left(g_{1}^{(\nu)}\right)$ $=c^{(\nu)} \exp \left(\rho^{(\nu)} / 2\right)$. Let $c_{j}^{(\nu)}$ denote the column vector ${ }^{t}\left(c_{j, 1}^{(\nu)}, \cdots, c_{j, N}^{(\nu)}\right)$ where $w_{j}^{(\nu)}=\sum_{m=1}^{N} v_{m}^{(\nu)} c_{j, m}^{(\nu)}$, and let \boldsymbol{r} be an $N n \times k$ matrix $\left[\begin{array}{c}c_{1}^{(1)} \cdots c_{k(1)}^{(1)} \\ \\ \\ \\ \\ \\ \\ c_{1}^{(n)} \cdots c_{k(n)}^{(n)}\end{array}\right)$, where $k=\sum_{\mu=1}^{n} k^{(\mu)}$. Let $\left(\hat{v}_{1}, \cdots, \hat{v}_{N n}\right)$ denote the basis $\left(v_{1}^{(1)}, \cdots, v_{N}^{(1)}\right.$, $\left.\cdots, v_{1}^{(n)}, \cdots, v_{N}^{(n)}\right)$ and let $\hat{e}_{1}, \cdots, \hat{e}_{N n}$ denote the $N n$ component column vectors, $\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots \\ 0\end{array}\right)$, etc., respectively. Let R and $A(\Lambda)$ denote an
$N n \times N n$ skew-symmetric matrix
$\left(\begin{array}{cc}R^{(1)} & \\ & \ddots \\ & \\ R^{(n)}\end{array}\right)$ and $\left[\begin{array}{ccccc}0 & \lambda_{12} K & \cdots & \lambda_{1 n} K \\ -\lambda_{21}^{t} K & 0 & & & \vdots \\ \vdots & & . & \lambda_{n-1 n} K \\ -\lambda_{n 1}^{t} K & \cdots & -\lambda_{n n-1}{ }^{t} K & 0\end{array}\right)$, respectively. Then we have

$$
\begin{align*}
& \left\langle g_{1}^{(1)} \cdots g_{1}^{(n)}\right\rangle_{\kappa_{1}}=\left\langle g_{1}^{(1)}\right\rangle_{k} \cdots\left\langle g_{1}^{(n)}\right\rangle_{k}(\operatorname{det}(1-A(\Lambda) R))^{1 / 2} \\
& \quad=\left\langle g_{1}^{(1)}\right\rangle_{k} \cdots\left\langle g_{1}^{(n)}\right\rangle_{k} \operatorname{Pfaffian}\left(\begin{array}{cc}
-A(\Lambda) & 1 \\
-1 & R
\end{array}\right) / \operatorname{Pfaffian}\left(\begin{array}{cc}
& 1 \\
-1 &
\end{array}\right) . \tag{3.6}
\end{align*}
$$

If $\left\langle g_{1}^{(1)} \cdots g_{1}^{(n)}\right\rangle_{\kappa_{1}} \neq 0$, we have

$$
\begin{equation*}
\mathrm{Nr}_{\kappa_{\Lambda}}\left(g_{1}^{(1)} \cdots g_{1}^{(n)}\right)=\left\langle g_{1}^{(1)} \cdots g_{1}^{(n)}\right\rangle_{\kappa_{\Lambda}} \exp (\rho(\Lambda) / 2) \tag{3.7}
\end{equation*}
$$

where $\rho(\Lambda)=\sum_{\mu, \nu=1}^{N n} R(\Lambda)_{\mu \nu} \hat{v}_{\mu} \hat{v}_{\nu}$ with $R(\Lambda)=R(1-A(\Lambda) R)^{-1}$. If we write $\mathrm{Nr}_{\kappa_{1}}\left(g^{(1)} \cdots g^{(n)}\right)=\sum_{m=0}^{N n} 1 / m!\sum_{\mu_{1}, \ldots, \mu_{m}=1}^{N n} \rho_{m}\left(\mu_{1}, \cdots, \mu_{m}\right) \hat{v}_{\mu_{m}} \cdots \hat{v}_{\mu_{1}}$, the coefficient $\rho_{m}\left(\mu_{1}, \cdots, \mu_{m}\right)$ is given by

$$
\left.\rho_{m}\left(\mu_{1}, \cdots, \mu_{m}\right)=(-)^{(m+k) / 2}\left\langle g_{1}^{(1)}\right\rangle_{k} \cdots\left\langle g_{1}^{(n)}\right\rangle_{\varepsilon} \left\lvert\, \begin{array}{l|l|l|}
& & \iota_{\boldsymbol{r}} \tag{3.8}\\
\hline-\boldsymbol{e} & -\boldsymbol{r l} & -1(1) \\
\hline
\end{array}\right.\right]
$$

where $\boldsymbol{e}=\left(e_{\mu_{1}}, \cdots, e_{\mu_{m}}\right)$. If $\left\langle g^{(1)} \cdots g^{(n)}\right\rangle_{\kappa_{1}} \neq 0$, we have

$$
\begin{aligned}
& \rho_{m}\left(\mu_{1}, \cdots, \mu_{m}\right)=\left\langle g^{(1)} \cdots g^{(n)}\right\rangle_{\kappa_{\Lambda}} \\
& \quad \times \operatorname{Pfaffian}\left(\begin{array}{cc}
\boldsymbol{e}^{\boldsymbol{e}} & \\
& \\
& t_{\boldsymbol{r}}
\end{array}\right)\left(\begin{array}{ll}
-R(1-A(\Lambda) R)^{-1} & (1-R A(\Lambda))^{-1} \\
-(1-A(\Lambda) R)^{-1} & (1-A(\Lambda) R)^{-1} A(\Lambda)
\end{array}\right)\left(\begin{array}{ll}
\boldsymbol{e} & \\
& \\
\boldsymbol{r}
\end{array}\right) .
\end{aligned}
$$

4. The extended Clifford group. Since we have not expounded this subject in [2], here we shall explain it in detail.

Let us consider the orthogonal space $\boldsymbol{C} \oplus W$ equipped with the inner product $\left\langle c+w, c^{\prime}+w^{\prime}\right\rangle=-\left\{(c+w) \varepsilon\left(c^{\prime}+w^{\prime}\right)+\left(c^{\prime}+w^{\prime}\right) \varepsilon(c+w)\right\}$ $=-2 c c^{\prime}+\left\langle w, w^{\prime}\right\rangle$. Let $G_{\text {ext }}(W)$ denote the extended Clifford group $\left\{\left.g \in A(W)\right|^{\boldsymbol{\beta}} \varepsilon(g)^{-1}, g(\boldsymbol{C} \oplus W) \varepsilon(g)^{-1}=\boldsymbol{C} \oplus W\right\}$. We denote by T_{g} the linear transformation of $C \oplus W$ induced by $g, T_{g}: c+w \mapsto g(c+w) \varepsilon(g)^{-1} . c+w$ $\in \boldsymbol{C} \oplus W$ belongs to $G_{\text {ext }}(W)$ if and only if $-c^{2}+w^{2} \neq 0$, and we have (4.1) $T_{c+w}\left(c^{\prime}+w^{\prime}\right)=-\left(c^{\prime}-w^{\prime}\right)+\left\{\left(-2 c c^{\prime}-\left\langle w, w^{\prime}\right\rangle\right) /\left(-c^{2}+w^{2}\right)\right\}(c+w)$.

If we denote by \hat{T}_{c+w} the reflection in $\boldsymbol{C} \oplus W$ with respect to the hyperplane $\left\{c^{\prime}+w^{\prime} \in \boldsymbol{C} \oplus W \mid\left\langle c+w, c^{\prime}+w^{\prime}\right\rangle=0\right\}$, then (4.1) reads

$$
\begin{equation*}
T_{c+w}=-\hat{T}_{c+w} \circ \varepsilon=-\varepsilon \circ \hat{T}_{c-w} \tag{4.2}
\end{equation*}
$$

This implies that any element of $G_{\text {oxt }}(W)$ is of the form $\left(c_{1}+w_{1}\right) \ldots$ $\left(c_{k}+w_{k}\right)$ with $c_{j}+w_{j} \in(C+W) \cap G_{\text {ext }}(W)$. The following exact sequence is valid

$$
\begin{equation*}
1 \rightarrow \mathrm{GL}(1, C) \rightarrow G_{\text {oxt }}(W) \rightarrow \mathrm{SO}(\boldsymbol{C} \oplus W) \rightarrow 1 \tag{4.3}
\end{equation*}
$$

Let $W_{\text {ext }}=\boldsymbol{C} w_{0} \oplus W$ be an orthogonal space, where w_{0} satisfies the following: $w_{0}^{2}=-1,\left\langle w, w_{0}\right\rangle=0$ for any $w \in W$. The theory of the extended Clifford group is reduced to that of $G^{+}\left(W_{\text {ext }}\right)=\left\{g \in G\left(W_{\text {ext }}\right) \mid \varepsilon(g)\right.$ $=g\}$. Firstly $\boldsymbol{F}_{\boldsymbol{c \oplus W}}: \boldsymbol{C} \oplus W \rightarrow W_{\text {ext }}, c+w \mapsto c w_{0}+w$ is an isomorphism. We also denote by $F_{A(W)}$ the isomorphism $A(W) \rightarrow A^{+}\left(W_{\text {ext }}\right), \quad a^{+}+a^{-}$ $\mapsto a^{+}+w_{0} a^{-}$. Note that $F_{c \oplus W}(c+w)=F_{A(W)}(c+w) w_{0}$. We have $F_{A(W)}\left(\varepsilon(a)^{*}\right)=\varepsilon\left(F_{A(W)}(a)\right)^{*}$ and $\mathrm{nr}(g) \underset{\text { def }}{=} g \varepsilon(g)^{*}=\mathrm{nr}\left(F_{A(W)}(g)\right)$ for g $\in G_{\text {ext }}(W)$. Moreover we have for $g \in G_{\text {ext }}(W)$

$$
\begin{equation*}
F_{c \oplus W} \circ T_{g}=T_{F_{A(W)(g)}} \circ F_{C \oplus W}, \tag{4.4}
\end{equation*}
$$

and the exact sequence (4.3) isomorphically is transformed into

$$
\begin{equation*}
1 \rightarrow \mathrm{GL}(1, C) \rightarrow G^{+}\left(W_{\text {ext }}\right) \rightarrow \mathrm{SO}\left(W_{\text {ext }}\right) \rightarrow 1 \tag{4.5}
\end{equation*}
$$

Let κ be an element of $\operatorname{Hom}_{C}\left(W, W^{*}\right)$, and define $\kappa_{\text {ext }} \in \operatorname{Hom}_{C}\left(W_{\text {ext }}\right.$, $W_{\text {oxt }}{ }^{*}$) by $\left\langle w w^{\prime}\right\rangle_{k_{\text {ext }}}=\left\langle w w^{\prime}\right\rangle_{k},\left\langle w w_{0}\right\rangle_{k_{\text {oxt }}}=0$ for $w, w^{\prime} \in W$. If we denote by
$F_{\Lambda(W)}$ the isomorphism $\Lambda(W) \rightarrow \Lambda^{+}\left(W_{\text {ext }}\right), a^{+}+a^{-} \mapsto a^{+}+w_{0} a^{-}$, then we have (4.6) $\quad F_{\Lambda(W)} \circ \mathrm{Nr}_{\varepsilon}=\mathrm{Nr}_{\varepsilon_{\text {ext }}} \circ F_{A(W)}$.
(4.4) and (4.6) provide us with a means to compute the norm of an element of $G_{\text {ext }}(W)$ and the rotation it induces in $C \oplus W$ from each other. In particular, the closure $\bar{G}_{\text {ext }}(W)$ coincides with $\mathrm{Nr}_{k}{ }^{-1}\left(\left\{c w_{1} \cdots w_{k}\right.\right.$ $\left.\left.\cdot \exp (\rho / 2+w) \mid c \in \boldsymbol{C}, w_{1}, \cdots, w_{k}, w \in W, \rho \in \Lambda^{2}(W)\right\}\right)$.

References

[1] Sato, M., Miwa, T., and Jimbo, M.: Proc. Japan Acad., 53A, 6-10, 147-152, 153-158, 183-185 (1977).
[2] -: RIMS preprint 234 (1977).

