57. On the 2-Components of the Unstable Homotopy Groups of Spheres. II

By Nobuyuki OdA
Department of Mathematics, Kyushu University
(Communicated by Kunihiko Kodaira, m. J. a., Dec. 12, 1977)

This note is the continuation of the part I with the same title. We will state the results on the 2 -components of the unstable homotopy groups of spheres for the following cases: π_{n+29}^{n} and π_{n+30}^{n} for all $n^{*)}$; π_{n+31}^{n} for $n^{*)} \leqq 29$. Moreover, the following groups will be given: π_{n+32}^{n} and π_{n+33}^{n} for $n^{*)} \leqq 8$. But the group π_{40}^{9} is not determined completely and the group extensions are not settled for π_{41}^{10} and π_{n+33}^{n} for $n=6,7$ and 8.
5. On the 29-stem. There are following new elements: $\tilde{\varepsilon}^{\prime}, \delta^{\prime}$ $\in \pi_{35}^{6}$ and $\delta^{\prime \prime} \in \pi_{38}^{7}$ with the Hopf invariants $\pm \tilde{\varepsilon}_{11}(\bmod$ other elements), $\delta_{11}\left(\bmod \bar{\mu}_{11} \circ \sigma_{28}\right)$, and $\phi_{13}\left(\bmod 4 \nu_{13} \circ \bar{\kappa}_{16}\right)$ respectively.

$$
\begin{aligned}
\pi_{32}^{3}= & Z_{2}\left\{\bar{\alpha} \circ \nu_{26}^{2}\right\} \oplus Z_{2}\left\{\nu^{\prime} \circ \eta_{6} \circ \mu_{3,7}\right\} \oplus Z_{2}\left\{\eta_{3} \circ \varepsilon_{4} \circ \bar{\kappa}_{12}\right\}, \\
\pi_{34}^{5}= & Z_{2}\left\{\phi_{5} \circ \nu_{82}^{2}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \bar{\kappa}_{8} \circ \nu_{28}^{2} \oplus Z_{2}\left\{\nu_{\nu} \circ \bar{\sigma}_{8} \circ \sigma_{27}\right\} \oplus Z_{2}\left\{\nu_{5}^{3} \circ \bar{\kappa}_{14}\right\}\right. \\
& \oplus Z_{2}\left\{\nu_{5} \circ \eta_{8} \circ \mu_{3,9}\right\} \oplus Z_{2}\left\{\eta_{5} \circ \varepsilon_{6}^{\prime} \circ \bar{\kappa}_{14}\right\} .
\end{aligned}
$$

In the above group, the following relation holds: $\phi_{5} \circ \nu_{28}^{2} \equiv \nu_{5} \circ \sigma_{8} \circ \bar{\sigma}_{15}$ ($\bmod \nu_{5} \circ \bar{\kappa}_{8} \circ \nu_{28}^{2}-\nu_{5}^{2} \circ \bar{\kappa}_{11} \circ \nu_{31}$).

Now we define elements by Toda brackets: $\delta^{\prime} \in\left\{\sigma^{\prime \prime} \circ \sigma_{13}, \sigma_{20}, 2 \sigma_{27}\right\}_{3}$, $\delta^{\prime \prime} \in\left\{\sigma^{\prime} \circ \sigma_{14}, \sigma_{21}, 2 \sigma_{28}\right\}_{4}$. Then we have $2 \delta^{\prime \prime}=-E \delta^{\prime}$ and $E^{2} \delta^{\prime \prime}=2\left(\sigma_{9} \circ \sigma_{16}^{*}\right)$. Moreover there are following important results: $\Delta\left(\tilde{\varepsilon}_{13}\right)=2 \tilde{\varepsilon}^{\prime}$ for some $\tilde{\varepsilon}^{\prime} \in \pi_{35}^{6}$ and $2 \dot{j}^{\prime} \equiv \nu_{6}^{3} \circ \bar{\kappa}_{15}=\nu_{6} \circ \bar{\kappa}_{9} \circ \nu_{29}^{2}\left(\bmod \nu_{6} \circ \sigma_{9} \circ \bar{\sigma}_{16}\right)$. Using these results, we have

$$
\begin{aligned}
& \pi_{35}^{6}=Z_{4}\left\{\delta^{\prime}\right\} \oplus Z_{4}\left\{\tilde{\varepsilon}^{\prime}\right\} \oplus Z_{2}\left\{\phi_{6} \circ \nu_{29}^{2}\right\} \oplus Z_{2}\left\{\eta_{8} \circ \varepsilon_{7} \circ \bar{\kappa}_{16}\right\}, \\
& \pi_{39}^{7}=Z_{8}\left\{\delta^{\prime \prime}\right\} \oplus Z_{2}\left\{\sigma^{\prime} \circ \varepsilon_{14} \circ \kappa_{22}\right\} \oplus Z_{2}\left\{\sigma^{\prime} \circ \omega_{14} \circ \nu_{30}^{2}\right\} \oplus Z_{2}\left\{\phi_{7} \circ \nu_{30}^{2}\right\} \oplus Z_{2}\left\{\eta_{7} \circ \varepsilon_{8} \circ \bar{\kappa}_{16}\right\} .
\end{aligned}
$$

In the above group, we have $\sigma^{\prime} \circ \omega_{14} \circ \nu_{30}^{2} \equiv E \tilde{\varepsilon}^{\prime}\left(\bmod E^{2} \pi_{34}^{5}\right)$. This is obtained showing that $\sigma^{\prime} \circ \omega_{14} \circ \nu_{30}^{2}$ is not double suspended: If $\sigma^{\prime} \circ \omega_{14} \circ \nu_{30}^{2}$ $\in E^{2} \pi_{34}^{\mathrm{s}}$, we may construct the Toda bracket $\left\{\sigma^{\prime} \circ \omega_{14}+x \phi_{7}+y \nu_{7} \circ \bar{\kappa}_{10}, \nu_{30}^{2}\right.$, $\left.2 \ell_{38}\right\}_{1}$ whose Hopf invariant is $\tilde{\varepsilon}_{13}$ (mod other elements). Then we see $\Delta \pi_{37}^{13}=0$, which contradicts the fact that $H \Delta\left(\tilde{\varepsilon}_{13}\right)=2 \tilde{\varepsilon}_{11} \neq 0$.

$$
\begin{aligned}
\pi_{38}^{9}= & Z_{10}\left\{\sigma_{9} \circ \sigma_{16}^{*}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \omega_{18} \circ \nu_{32}^{2}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \varepsilon_{10} \circ \kappa_{24}\right\} \\
& \oplus Z_{2}\left\{\sigma_{9} \circ \nu_{16} \circ \bar{\sigma}_{19}\right\} \oplus Z_{2}\left\{\eta_{9} \circ \varepsilon_{10} \circ_{18}\right\} . \\
\pi_{39}^{10}= & Z_{8}\left\{\Delta\left(\bar{\kappa}_{21}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{2}\right)\right\} \oplus Z_{16}\left\{\sigma_{10} \circ \sigma_{17}^{*}\right\} \oplus Z_{2}\left\{\sigma_{10} \circ \nu_{17} \circ \bar{\sigma}_{20}\right\} .
\end{aligned}
$$

This results from the relation $4 \Delta\left(\bar{\kappa}_{21}\right)=\sigma_{10} \circ \varepsilon_{17} \circ \kappa_{25}$.
We will use hereafter the metastable periodic elements: $\pi_{40}^{11}=Z_{2}\left\{C_{1}\right.$ 。 $\frac{\left.\bar{\mu}_{23}\right\} \oplus Z_{18}\left\{\sigma_{11} \circ \sigma_{18}^{*}\right\} \oplus Z_{2}\left\{\sigma_{11} \circ \nu_{18} \circ \bar{\sigma}_{21}\right\}, \pi_{41}^{12}=Z_{4}\left\{\Delta\left(\nu_{25}^{*}\right)+2 \sigma_{12} \circ \sigma_{19}^{*}\right\} \oplus Z_{2}\left\{A_{1} \circ \tilde{\rho}_{24}\right\} \oplus Z_{2}}{\left.{ }^{*}\right)}$
$\cdot\left\{E C_{1} \circ \bar{\mu}_{24}\right\} \oplus Z_{18}\left\{\sigma_{12} \circ \sigma_{19}^{*}\right\}, \quad \pi_{42}^{13}=Z_{2}\left\{E A_{1} \circ \bar{\mu}_{25}\right\} \oplus Z_{8}\left\{\sigma_{13} \circ \sigma_{20}^{*}\right\}, \quad \pi_{43}^{14}=Z_{4}\left\{\sigma_{14} \circ \sigma_{21}^{*}\right\}, \quad \pi_{44}^{15}$ $=Z_{2}\left\{L_{1}\right\} \oplus Z_{2}\left\{\sigma_{15} \circ \sigma_{22}^{*}\right\}$.

Let us choose an element $P_{1} \in\left\{\sigma_{18}^{2}, 2 l_{30}, \kappa_{30}\right\}_{1}$. This enables us to determine $\pi_{45}^{16}=Z_{2}\left\{\sigma_{16}^{*} \circ \sigma_{38}\right\} \oplus Z_{2}\left\{P_{1}\right\} \oplus \pi_{44}^{15}, \pi_{48}^{17}=Z_{2}\left\{\sigma_{17}^{*} \circ \sigma_{39}\right\} \oplus Z_{2}\left\{E P_{1}\right\}, \pi_{47}^{18}=\pi_{48}^{17}, \pi_{48}^{19}$ $=Z_{2}\left\{C_{2} \circ \mu_{39}\right\} \oplus \pi_{48}^{17}, \pi_{49}^{20}=Z_{2}\left\{A_{2} \circ \mu_{40}\right\} \oplus \pi_{48}^{19}$.

Showing that $E^{7} P_{1}=0$ and that $\Delta\left(\varepsilon_{45}\right)=\Delta\left(\overline{\mathcal{\nu}}_{45}\right)$ is divisible by 2 , we obtain the relations $E^{5} P_{1}=2 M_{2}^{\prime} \circ \nu_{47}$ and $\Delta\left(\varepsilon_{45}\right)=E^{6} P_{1}=2 E M_{2}^{\prime} \circ \nu_{48}$. It follows that $\pi_{50}^{21}=Z_{4}\left\{M_{2}^{\prime} \circ \nu_{47}\right\} \oplus Z_{2}\left\{E A_{2} \circ \mu_{41}\right\} \oplus Z_{2}\left\{\sigma_{21}^{*} \circ \sigma_{43}\right\}, \pi_{51}^{22}=Z_{4}\left\{E M_{2}^{\prime} \circ \nu_{48}\right\}$ $\oplus Z_{2}\left\{\sigma_{22}^{*} \circ \sigma_{44}\right\}$.

It is not difficult to show that $2\left(M_{2} \circ \nu_{50}\right)=0$ and $\Delta\left(\nu_{49}^{2}\right)=E^{3} M_{2}^{\prime} \circ \nu_{50}$. Then we have $\pi_{52}^{23}=Z_{2}\left\{E^{2} M_{2}^{\prime} \circ \nu_{49}\right\} \oplus Z_{2}\left\{\sigma_{23}^{*} \circ \sigma_{45}\right\}, \pi_{53}^{24}=Z_{2}\left\{M_{2} \circ \nu_{50}\right\} \oplus Z_{2}\left\{E^{3} M_{2}^{\prime} \circ \nu_{50}\right\}$, $\pi_{54}^{25}=Z_{2}\left\{E M_{2} \circ \nu_{51}\right\}, \pi_{55}^{28}=\pi_{54}^{25}, \pi_{56}^{27}=Z_{2}\left\{C_{3} \circ \eta_{55}\right\} \oplus \pi_{54}^{25}, \pi_{57}^{28}=Z_{2}\left\{A_{3} \circ \eta_{56}\right\} \oplus Z_{2}\left\{E C_{3} \circ \eta_{58}\right\}$, $\pi_{58}^{29}=Z_{2}\left\{E A_{3} \circ \eta_{57}\right\}, \pi_{59}^{30}=Z\left\{\Delta\left(\left(_{61}\right)\right\}, \pi_{n+29}^{n}=0\right.$ for $n \geqq 31$.
6. On the 30 -stem. There are following new elements: $\theta^{\text {vir }}$ $\in \pi_{42}^{12}, \theta^{\mathrm{VI}} \in \pi_{44}^{14}, \theta^{\mathrm{V}} \in \pi_{45}^{15}, \theta^{\mathrm{IV}} \in \pi_{48}^{18}, \theta^{\prime \prime \prime} \in \pi_{50}^{20}, \theta^{\prime \prime} \in \pi_{52}^{22}, \theta_{23}^{\prime} \in \pi_{53}^{23}$ with the Hopf invariants $\bar{\zeta}_{23}\left(\bmod 2 \bar{\zeta}_{23}\right), \eta_{27} \circ \sigma_{28} \circ \mu_{35}, \sigma_{29} \circ \mu_{39}, \rho_{31}\left(\bmod 2 \rho_{31}\right), \zeta_{39}\left(\bmod 2 \zeta_{39}\right)$, $\eta_{43}^{2} \circ \sigma_{45}, \eta_{45} \circ \sigma_{48}$ respectively.

For $n \leqq 8$, the group extensions are obtained making use of the known relations:

$$
\begin{aligned}
& \pi_{33}^{3}=Z_{4}\left\{\varepsilon^{\prime} \circ \bar{\kappa}_{13}\right\} \oplus Z_{2}\left\{\varepsilon_{3} \circ \nu_{11} \circ \bar{\sigma}_{14}\right\}, \\
& \pi_{35}^{5}=Z_{8}\left\{\nu_{5} \circ \sigma_{8} \circ \bar{\kappa}_{11}\right\} \oplus Z_{2}\left\{\phi_{6} \circ \sigma_{28} \oplus Z_{2}\left\{\nu_{5} \circ \zeta_{3,8}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \bar{\nu}_{8} \circ \bar{\sigma}_{16}\right\},\right. \\
& \pi_{38}^{6}=Z_{4}\left\{\Delta\left(\xi_{13} \circ \sigma_{31}\right)\right\} \oplus Z_{4}\left\{\sigma^{\prime \prime} \circ \bar{\rho}_{13}\right\} \oplus Z_{8}\left\{\nu_{6} \circ \sigma_{9} \circ \bar{\kappa}_{16} \oplus Z_{2}\left\{\phi_{6} \circ \sigma_{29}\right\},\right. \\
& \pi_{37}^{7}=Z_{8}\left\{\sigma^{\prime} \circ \bar{\rho}_{14}\right\} \oplus Z_{2}\left\{\sigma^{\prime} \circ \phi_{14}\right\} \oplus Z_{2}\left\{\sigma^{\prime} \circ \psi_{14}\right\} \oplus Z_{8}\left\{\nu_{7} \circ \sigma_{10} \circ \bar{\kappa}_{17}\right\} \oplus Z_{2}\left\{\phi_{7} \circ \sigma_{30}\right\} .
\end{aligned}
$$

The relation $\Delta\left(\sigma_{21}^{3}\right)=2 \psi_{10} \circ \sigma_{33}=\sigma_{10} \circ \phi_{17}$ implies $\pi_{39}^{9}=Z_{19}\left\{\sigma_{9} \circ \bar{\rho}_{19}\right\} \oplus Z_{8}\left\{\sigma_{9} \circ \nu_{16} \circ \bar{\kappa}_{19}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \phi_{16}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \psi_{16}\right\} \oplus Z_{2}\left\{\phi_{9} \circ \sigma_{32}\right\}$, $\pi_{40}^{10}=Z_{2}\left\{\Delta\left(E A_{2} \circ \eta_{41}\right)\right\} \oplus Z_{4}\left\{\psi_{10} \circ \sigma_{33}\right\} \oplus Z_{16}\left\{\sigma_{10} \circ \bar{\rho}_{17}\right\} \oplus Z_{4}\left\{\sigma_{10} \circ \nu_{17} \circ \bar{\kappa}_{20}\right\} \oplus Z_{2}\left\{\sigma_{10} \circ \psi_{17}\right\}$, $\pi_{41}^{11}=Z_{2}\left\{\psi_{11} \circ \sigma_{34}\right\} \oplus Z_{18}\left\{\sigma_{11} \circ \bar{\rho}_{18}\right\} \oplus Z_{2}\left\{\sigma_{11} \circ \nu_{18} \circ \bar{\kappa}_{21}\right\} \oplus Z_{2}\left\{\sigma_{11} \circ \psi_{18}\right\}$.

We have to define elements by Toda brackets: $\theta^{\mathrm{VII}} \in\left\{\sigma_{12}, \nu_{19}, \bar{\zeta}_{22}\right\}_{1}, \theta^{\mathrm{VI}}$ $\in\left\{8 \sigma_{14}, \sigma_{21}, \rho_{28}\right\}_{1}, \theta^{\mathrm{v}} \in\left\{4 \sigma_{15}, \sigma_{22}, \rho_{29}\right\}_{1}, \theta^{\mathrm{IV}} \in\left\{2 \sigma_{16}, \sigma_{23}, \rho_{30}\right\}_{1}, \theta^{\prime \prime \prime} \in\left\{A_{2}, \eta_{40}^{2} \circ \sigma_{42}, 2{c_{49}}\right\}_{1}$, $\theta_{23}^{\prime} \in\left\{2 \sigma_{23}, \sigma_{30}, 2 \sigma_{37}, \sigma_{44}\right\}_{1}$. This enables us to determine
$\pi_{42}^{12}=Z_{32}\left\{\theta^{\mathrm{VII}}\right\} \oplus Z_{4}\left\{\sigma_{12} \circ \bar{\rho}_{19} \pm 2 \theta^{\mathrm{VII}}\right\} \oplus Z_{2}\left\{\psi_{12} \circ \sigma_{35}\right\} \oplus Z_{2}\left\{\sigma_{12} \circ \psi_{19}\right\}$,
$\pi_{43}^{18}=Z_{32}\left\{\rho_{13}^{2}\right\} \oplus Z_{2}\left\{\psi_{13} \circ \sigma_{38}\right\}$,
$\pi_{44}^{14}=Z_{64}\left\{\theta^{\mathrm{V}}\right\} \oplus Z_{2}\left\{\omega_{14} \circ \kappa_{30}\right\} \oplus Z_{2}\left\{\psi_{14} \circ \sigma_{37}\right\}$,
$\pi_{45}^{15}=Z_{64}\left\{\theta^{\mathrm{V}}\right\} \oplus Z_{2}\left\{\omega_{15} \circ \kappa_{31}\right\} \oplus Z_{2}\left\{\psi_{15} \circ \sigma_{38}\right\}$,
$\pi_{46}^{16}=Z_{128}\left\{\theta^{\mathrm{IV}}\right\} \oplus Z_{16}\left\{E \theta^{\mathrm{V}} \pm 2 \theta^{\mathrm{IV}}\right\} \oplus Z_{2}\left\{B_{1} \circ \kappa_{32}\right\} \oplus Z_{2}\left\{\omega_{18} \circ \kappa_{32}\right\} \oplus Z_{2}\left\{\psi_{16} \circ \sigma_{39}\right\}$.
In the above groups, we have the following relations: $8 \theta^{\mathrm{vII}}$ $= \pm 4 \sigma_{12} \circ \bar{\rho}_{19}, \rho_{13}^{2} \equiv E \theta^{\mathrm{VII}}\left(\bmod 2 E \theta^{\mathrm{VII}}\right), 2 \theta^{\mathrm{VI}} \equiv \rho_{14}^{2}\left(\bmod 2 \rho_{14}^{2}\right), 2 \theta^{\mathrm{V}}=E \theta^{\mathrm{VI}}(\bmod$ $\left.2 E \theta^{\mathrm{VI}}\right), 32 \theta^{\mathrm{IV}}= \pm 16 E \theta^{\mathrm{v}}$.

Next, we have
$\pi_{47}^{17}=Z_{84}\left\{E \theta^{\mathrm{Vv}}\right\} \oplus Z_{2}\left\{E B_{1} \circ \kappa_{33}\right\} \oplus Z_{2}\left\{\psi_{17} \circ \sigma_{40}\right\}, \pi_{48}^{18}=Z_{64}\left\{E^{2} \theta^{\mathrm{IV}}\right\}, \pi_{49}^{19}=\pi_{48}^{18}$.
From the relation $4\left(E^{4} \theta^{\mathrm{IV}}-2 x \theta^{\prime \prime \prime}\right)=0(x:$ odd $)$, it follows that

$$
\pi_{50}^{20}=Z_{128}\left\{\theta^{\prime \prime \prime}\right\} \oplus Z_{4}\left\{E^{4} \theta^{\mathrm{IV}}-2 x \theta^{\prime \prime \prime}\right\}, \pi_{51}^{21}=Z_{64}\left\{E \theta^{\prime \prime \prime}\right\} .
$$

We will use Proposition 11.13 of Toda [11], to show the existence
of $\theta^{\prime \prime}$ such that $E \theta^{\prime \prime}=2 \theta_{23}^{\prime}$ which appears in the next

$$
\pi_{62}^{22}=Z_{64}\left\{\theta^{\prime \prime}\right\} \oplus Z_{2}\left\{V_{2} \circ \nu_{49}\right\}, \pi_{63}^{23}=Z_{64}\left\{\theta_{23}^{\prime}\right\} \oplus Z_{2}\left\{E V_{2} \circ \nu_{60}\right\} .
$$

A result of J.F. Adams gives us an easy computation of the remaining part of the 31 -stem: According to Corollary 1.3 of Adams [1], $\Delta\left(\epsilon_{63}\right)=\left[c_{31}, \iota_{31}\right]$ is a 9 -fold suspension but not a 10 -fold suspension.

Hence we see $\pi_{54}^{24}=Z_{8}\left\{\Delta\left(\sigma_{49}\right)-4 \theta_{24}^{\prime}\right\} \oplus Z_{64}\left\{\theta_{24}^{\prime}\right\} \oplus Z_{2}\left\{E^{2} V_{2} \circ \nu_{51}\right\}, \pi_{55}^{25}=Z_{32}\left\{\theta_{25}^{\prime}\right\}$ $\oplus Z_{2}\left\{E^{3} V_{2} \circ \nu_{52}\right\}, \quad \pi_{58}^{26}=Z_{32}\left\{\theta_{28}^{\prime}\right\}, \quad \pi_{57}^{27}=\pi_{56}^{26}, \quad \pi_{58}^{28}=Z_{44}\left\{\Delta\left(\nu_{57}\right)-4 \theta_{28}^{\prime}\right\} \oplus Z_{32}\left\{\theta_{28}^{\prime}\right\}, \quad \pi_{59}^{29}$ $=Z_{16}\left\{\theta_{29}^{\prime}\right\}, \pi_{64}^{30}=Z_{8}\left\{\theta_{30}^{\prime}\right\}, \pi_{61}^{31}=Z_{4}\left\{\theta_{31}^{\prime}\right\}, \pi_{n+30}^{n}=Z_{2}\left\{\theta_{n}^{\prime}\right\}$ for $n \geqq 32$.
7. On the 31 -stem. There are following new elements: $\kappa_{10}^{*} \in \pi_{41}^{10}$, $\omega_{14}^{*} \in \pi_{45}^{14}, \kappa^{* \prime} \in \pi_{46}^{15}$ with the Hopf invariants $\nu_{19} \circ \bar{\sigma}_{22}, \pm \nu_{27}^{*}, \nu_{29} \circ \kappa_{32}$ respectively.

We have the relations: $2 \alpha_{3}^{\prime}=0, E \alpha_{3}^{\prime}=2 \alpha_{3}^{\prime \prime}, E \alpha_{3}^{\prime \prime}=2 \alpha_{3}^{\prime \prime \prime}, E^{2} \alpha_{3}^{\prime \prime \prime}=2 \alpha_{3}^{\mathrm{IV}}$ $\left(\bmod \pi_{33}^{9} \circ \sigma_{33}\right)$.

$$
\begin{gathered}
\pi_{34}^{3}=Z_{2}\left\{\delta_{3} \circ \sigma_{27}\right\} \oplus Z_{2}\left\{\varepsilon_{3} \circ \nu_{11} \circ \bar{\kappa}_{14}\right\} \oplus Z_{2}\left\{\nu^{\prime} \circ \varepsilon_{6} \circ \bar{\kappa}_{14}\right\} \oplus Z_{2}\left\{\phi^{\prime} \circ \nu_{28}^{2}\right\}, \\
\pi_{38}^{5}=Z_{2}\left\{\nu_{5} \circ E_{\phi^{\prime \prime \prime}} \circ \nu_{33}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \bar{\nu}_{8} \circ \overline{1}_{16}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \varepsilon_{8} \circ \bar{\kappa}_{18}\right\} \oplus Z_{2}\left\{\delta_{5} \circ \sigma_{29}\right\} \oplus Z_{2}\left\{\alpha_{3}^{\prime}\right\} .
\end{gathered}
$$

We note that the relation $2 \bar{\nu}_{6} \circ \nu_{14} \circ \bar{\kappa}_{17}=\nu_{6} \circ \varepsilon_{9} \circ \bar{\kappa}_{17}$ holds in the next
$\pi_{37}^{6}=Z_{8}\left\{\Delta\left(\tau^{\mathrm{IV}}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{1} \circ \kappa_{28}\right)\right\} \oplus Z_{4}\left\{\bar{\nu}_{6} \circ \nu_{14} \circ \bar{\kappa}_{17}\right\} \oplus Z_{2}\left\{\nu_{6} \circ E^{2} \phi^{\prime \prime \prime} \circ \nu_{34}\right\}$
$\oplus Z_{2}\left\{\delta_{8} \circ \sigma_{30}\right\} \oplus Z_{4}\left\{\alpha_{3}^{\prime \prime}\right\}$.
$\pi_{38}^{7}=Z_{2}\left\{\sigma^{\prime} \circ \bar{\sigma}_{14}^{\prime}\right\} \oplus Z_{2}\left\{\sigma^{\prime} \circ \bar{\mu}_{14} \circ \sigma_{31}\right\} \oplus Z_{2}\left\{\bar{\nu}_{7} \circ \nu_{18} \circ \bar{\kappa}_{18}\right\} \oplus Z_{2}\left\{\delta_{7} \circ \sigma_{31}\right\} \oplus Z_{8}\left\{\alpha_{3}^{\prime \prime \prime}\right\}$.

Following two groups are not determined completely.

$$
\begin{aligned}
\pi_{40}^{9}= & Z_{2}\left\{\sigma_{9} \circ \delta_{18}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \bar{\mu}_{18} \circ \sigma_{33}\right\} \oplus Z_{2}\left\{\sigma_{9} \circ \bar{\sigma}_{18}^{\prime}\right\} \oplus Z_{2}\left\{\delta_{9} \circ \sigma_{33}\right\} \\
& \oplus\left(0 \text { or } Z_{2}\right)\left\{\tilde{\nu}_{9} \circ \nu_{17} \circ \bar{\kappa}_{20}\right\} \oplus Z_{18}\left\{\alpha_{3}^{\mathrm{IV}}\right\},
\end{aligned}
$$

The last direct summand but one does not affect the next group, since $\bar{\nu}_{10} \circ \nu_{18} \circ \bar{\kappa}_{21}=0$.

$$
\pi_{41}^{10}=Z_{8}\left\{\Delta\left(\sigma_{21}^{*}\right)\right\} \oplus\left(Z_{4} \text { or } Z_{2} \oplus Z_{2}\right)\left\{\kappa_{10}^{*}, \delta_{10} \circ \sigma_{34}\right\} \oplus Z_{16}\left\{E \alpha_{3}^{\mathrm{IV}}\right\} .
$$

Although the above group extension is not a complete one, we have the relation $\delta_{11} \circ \sigma_{35}=0$. Hence we obtain the complete group structure in the next stage.

$$
\pi_{42}^{11}=Z_{2}\left\{\kappa_{11}^{*}\right\} \oplus Z_{16}\left\{E^{2} \alpha_{3}^{\mathrm{IV}}\right\}, \pi_{43}^{12}=Z_{4}\left\{\Delta\left(\bar{\kappa}_{25}\right)\right\} \oplus \pi_{42}^{11}
$$

We define an element $\alpha_{3}^{\mathrm{V}} \in\left\{\rho_{13}, 32 \iota_{28}, \rho_{28}\right\}_{1}$. Then $2 \alpha_{3}^{\mathrm{V}}=E^{4} \alpha_{3}^{\mathrm{IV}}$ and $H\left(\alpha_{3}^{\mathrm{V}}\right)$ $=4 \bar{\zeta}_{25}$. Thus we have

$$
\pi_{44}^{13}=Z_{2}\left\{\kappa_{13}^{*}\right\} \oplus Z_{32}\left\{\alpha_{3}^{\mathrm{V}}\right\} .
$$

Let us choose an element $\kappa^{* \prime} \in\left\{\omega_{15}, 2 \iota_{31}, \kappa_{31}\right\}_{1}$, and make use of the periodic elements [9] to obtain the following isomorphisms : $\pi_{46}^{15}=Z_{2}\left\{D_{1}^{\mathrm{II}}\right\}$ $\oplus Z_{2}\left\{D_{1}^{(1)} \circ \sigma_{39}\right\} \oplus Z_{2}\left\{\kappa^{*}\right\} \oplus E \pi_{45}^{14}, \quad \pi_{47}^{18}=Z_{2}\left\{B_{1}^{\mathrm{II}}\right\} \oplus Z_{2}\left\{B_{1}^{(1)} \circ \sigma_{40}\right\} \oplus \pi_{48}^{15}, \quad \pi_{48}^{17}=Z_{2}\left\{E B_{1}^{11}\right\}$ $\oplus Z_{2}\left\{E B_{1}^{(1)} \circ \sigma_{41}\right\} \oplus Z_{2}\left\{E^{2} \kappa^{* \prime}\right\} \oplus E \pi_{45}^{14 *)}, \pi_{49}^{18}=Z_{2}\left\{E^{2} B_{1}^{\text {II }}\right\} \oplus Z_{2}\left\{E^{3} \kappa^{* \prime}\right\} \oplus E \pi_{45}^{14}, \quad \pi_{n+31}^{n}$ $=E \pi_{45}^{14}$ for $n=19,20,21,22$.

Similarly we have $\pi_{54}^{23}=Z_{2}\left\{D_{2}^{\mathrm{I}}\right\} \oplus Z_{2}\left\{D_{2} \circ \sigma_{47}\right\} \oplus E \pi_{45}^{14}, \pi_{55}^{24}=Z_{2}\left\{B_{2}^{\mathrm{I}}\right\} \oplus Z_{2}\left\{B_{2} \circ\right.$ $\left.\sigma_{48}\right\} \oplus \pi_{54}^{23}, \pi_{56}^{25}=Z_{2}\left\{E B_{2}^{1}\right\} \oplus Z_{2}\left\{E B_{2} \circ \sigma_{49}\right\} \oplus E \pi_{45}^{14}, \pi_{57}^{26}=Z_{2}\left\{E^{2} B_{2}^{1}\right\} \oplus E \pi_{45}^{14}, \pi_{n+31}^{n}=E \pi_{45}^{14}$ for $n=27,28,29$.
*) The direct summand $E \pi_{45}^{14}$ must be understood as the image of the iterated suspension whose restriction to this group is incidentally monic.

We have to show the following results;

$$
\pi_{45}^{14}=Z_{8}\left\{\omega_{14}^{*}\right\} \oplus Z_{2}\left\{\kappa_{14}^{*}\right\} \oplus Z_{64}\left\{\rho_{3,14}\right\}, E \pi_{45}^{14}=Z_{2}\left\{\omega_{15}^{*}\right\} \oplus Z_{2}\left\{\kappa_{15}^{*}\right\} \oplus Z_{84}\left\{\rho_{3,15}\right\} .
$$

We see $\Delta\left(\nu_{29}^{*}\right)= \pm 2 \omega_{14}^{*}$ and $8 \omega_{14}^{*}=0$. Moreover $E^{12}: E \pi_{45}^{14} \rightarrow \pi_{58}^{27}$ is an isomorphism onto. Hence by Proposition 3.6 [11], we conclude that there exists an element $\rho_{3,14}$ of π_{45}^{14} such that $\rho_{3,26} \in\left\{16 t_{28}, 2 \rho_{28}, \rho_{41}\right\}$ and $2 \rho_{3,14} \equiv E \alpha_{3}^{\mathrm{v}}\left(\bmod 2 E \alpha_{3}^{\mathrm{v}}, 2 \omega_{14}^{*}\right)$, which also implies $H\left(\rho_{3,14}\right) \equiv \eta_{27} \circ \bar{\mu}_{28}\left(\bmod \nu_{27}^{*}\right)$. This determines the group structures of π_{45}^{14} and $E \pi_{45}^{14}$.
8. Some results on the 32 . and 33 -stems. We have the following results.

$$
\begin{aligned}
\pi_{35}^{3}= & Z_{2}\left\{\nu^{\prime} \circ \eta_{8} \circ \varepsilon_{7} \circ \bar{\kappa}_{15}\right\} \oplus Z_{4}\left\{\phi^{\prime} \circ \sigma_{28}\right\} \oplus Z_{2}, \\
\pi_{37}^{5}= & Z_{8}\left\{\phi^{\prime \prime} \circ \sigma_{30}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \eta_{8} \circ \varepsilon_{9} \circ \bar{\kappa}_{17}\right\} \oplus Z_{2}, \\
\pi_{38}^{6}= & Z_{8}\left\{G_{0}^{(2)}\right\} \oplus Z_{4}\left\{\Delta\left(\sigma_{13} \circ \bar{\kappa}_{20}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{1}^{\text {II }}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{1}^{(1)} \circ \sigma_{33}\right)\right\} \\
& \oplus \boldsymbol{Z}_{8}\left\{E \phi^{\prime \prime} \circ \sigma_{31}\right\} \oplus Z_{2}, \\
\pi_{39}^{7}= & Z_{2}\left\{\sigma^{\prime} \circ \mu_{3,14} \oplus \boldsymbol{Z}_{2}\left\{\sigma^{\prime} \circ \eta_{14} \circ \sigma_{15} \circ \bar{\mu}_{22}\right\} \oplus Z_{8}\left\{E^{2} \phi^{\prime \prime} \circ \sigma_{32}\right\} \oplus Z_{2} .\right.
\end{aligned}
$$

In the above groups, the last direct summand Z_{2} must be read as $Z_{2}\left\{\mu_{3, n} \circ \sigma_{n+26}\right\}$.

$$
\begin{aligned}
& \pi_{38}^{3}=Z_{2}\left\{\nu^{\prime} \circ \phi_{6} \circ \sigma_{29} \uparrow Z_{2} \oplus Z_{2},\right. \\
& \pi_{38}^{5}=Z_{2}\left\{\nu_{5} \circ \sigma_{8} \circ \nu_{15} \circ \bar{\kappa}_{18}\right\} \oplus Z_{2}\left\{\nu_{5} \circ \phi_{8} \circ \sigma_{31}\right\} \oplus Z_{2} \oplus Z_{2} .
\end{aligned}
$$

Following groups are not determined completely. The element κ_{6}^{\prime} has the Hopf invariant $\bar{\nu}_{11} \circ \bar{\kappa}_{19}$.

$$
\begin{aligned}
\pi_{39}^{6}= & Z_{2}\left\{\Delta\left(E A_{1}^{(2)}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{1} \circ \omega_{25}\right)\right\} \oplus Z_{2}\left\{\Delta\left(E A_{1} \circ \sigma_{25} \circ \mu_{32}\right)\right\} \\
& \oplus\left(Z_{2} \oplus \boldsymbol{Z}_{2} \text { or } \boldsymbol{Z}_{4}\right)\left\{\kappa_{6}^{\prime}, \nu_{6} \circ \sigma_{9} \circ \nu_{16} \circ \bar{\kappa}_{19}\right\} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}, \\
\pi_{40}^{7}= & \boldsymbol{Z}_{2}\left\{\boldsymbol{\sigma}^{\prime} \circ \eta_{10} \circ \mu_{3,15}\right) \oplus \boldsymbol{Z}_{2}\left\{\bar{\sigma}_{7} \circ \sigma_{26}^{2}\right\} \oplus\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \text { or } \boldsymbol{Z}_{4}\right)\left\{\kappa_{7}^{\prime}, \nu_{7} \circ \sigma_{10} \circ \nu_{17} \circ \bar{\kappa}_{20}\right\} \\
& \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} .
\end{aligned}
$$

In the above groups, the direct summands $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ must be read as $Z_{2}\left\{\mu_{4, n}\right\} \oplus Z_{2}\left\{\eta_{n} \circ \mu_{3, n+1} \circ \sigma_{n+26}\right\}$.

References are listed in the part I, which appeared in Proc. Japan Acad., 53, Ser. A, No. 6 (1977).

