6. A Note on Normal Ideals of Asano Orders

By Tatsuhiko SAITO

Faculty of General Education, University of Fisheries

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1978)

Let R be a ring with an identity and let \mathfrak{O} be an Asano order of R. It is well-known that the set of all two-sided \mathfrak{O} -ideals forms a group under multiplication and every integral two-sided \mathfrak{O} -ideal can be uniquely written as a product of a finite number of prime ideals of \mathfrak{O} ([1]).

In the present paper we show that, if two Asano orders \mathfrak{O} and \mathfrak{O}' of R are equivalent to each other, then the set of all left \mathfrak{O} - and right \mathfrak{O}' -ideals ($\mathfrak{O}-\mathfrak{O}'$ -ideals) forms a group under multiplication which is isomorphic to the group of all two-sided \mathfrak{O} -ideals. Then the concept of prime ideals is naturally generalized for $\mathfrak{O}-\mathfrak{O}'$ -ideals. By using the definition we obtain prime-factorization of $\mathfrak{O}-\mathfrak{O}'$ -ideals.

Our results can be generalized in the case of semigroup treated in [2].

Let \mathfrak{O} be an order of a ring R with an identity. A subset A of R is called a left \mathfrak{O} -ideal if (i) A is a left \mathfrak{O} -module, (ii) A contains a regular element and (iii) $Aa \subseteq \mathfrak{O}$ for some regular element a of R. Right \mathfrak{O}' -ideals are defined in a similar fashion, where \mathfrak{O}' denotes an order of R. If A is a left \mathfrak{O} -ideal and a right \mathfrak{O}' -ideal, then A is called an $\mathfrak{O}-\mathfrak{O}'$ -ideal. Let $\{\mathfrak{O}^i, \mathfrak{O}^k, \cdots\}$ be a system of the orders which are equivalent to a fixed order \mathfrak{O} of R.

Throughout this paper we shall assume that:

(1) $\mathfrak{O}^i, \mathfrak{O}^k, \cdots$ are maximal orders of R.

(2) A fixed order \mathbb{O}^i is regular (bounded).

(3) Ascending chain condition holds for integral two-sided \mathbb{O}^{i} -ideals for a fixed order \mathbb{O}^{i} .

(4) Each prime ideal of \mathbb{O}^i is maximal for a fixed order \mathbb{O}^i .

Let \mathfrak{N}_{ik} be the set of all $\mathfrak{O}^i - \mathfrak{O}^k$ -ideals. For convenience $A = A^{ik}$ will denote that $A \in \mathfrak{N}_{ik}$. The product AB of an $\mathfrak{O}^i - \mathfrak{O}^k$ -ideal A and an $\mathfrak{O}^j - \mathfrak{O}^l$ -ideal B is called proper if k=j. Then the set of all ideals defined on the system $\{\mathfrak{O}^i, \mathfrak{O}^k, \cdots\}$ forms the Brandt's groupoid under proper multiplication.

Lemma 1. Let A and B be an $\mathbb{Q}^i - \mathbb{Q}^k$ -ideal and an $\mathbb{Q}^j - \mathbb{Q}^l$ -ideal respectively. Then the product AB, which is not necessarily proper, is an $\mathbb{Q}^i - \mathbb{Q}^l$ -ideal.

Proof. It is clear that $\mathbb{Q}^i A B \mathbb{Q}^i \subseteq A B$ and A B contains a regular

T. SAITO

element. Let a and b be regular elements of R such that $Aa \subseteq \mathfrak{O}^i$ and $Bb \subseteq \mathfrak{O}^j$. By the regularity of the orders \mathfrak{O}^k and \mathfrak{O}^j , there exists a regular element c of R such that $\mathfrak{O}^j c \subseteq \mathfrak{O}^k$. Then we have $ABbca \subseteq A\mathfrak{O}^i ca \subseteq A\mathfrak{O}^k a = Aa \subseteq \mathfrak{O}^i$. Thus AB is a left \mathfrak{O}^i -ideal. Similarly we obtain that AB is a right \mathfrak{O}^i -ideal.

Theorem. 1. The set \mathfrak{N}_{ik} of all $\mathfrak{O}^i - \mathfrak{O}^k$ -ideals forms an abelian group under multiplication for any fixed indices i and k. Moreover \mathfrak{N}_{ik} is isomorphic to the group \mathfrak{N}_{ii} of all two-sided \mathfrak{O}^i -ideals.

Proof. By Lemma 1, it is clear that \mathfrak{N}_{ik} forms a semigroup under multiplication. Let A be any $\mathbb{O}^{i} - \mathbb{O}^{k}$ -ideal. Evidently $(\mathbb{O}^{k}\mathbb{O}^{i})^{-1}$ is an $\mathfrak{O}^{i} - \mathfrak{O}^{k}$ -ideal. Then we have that $A(\mathfrak{O}^{k}\mathfrak{O}^{i})^{-1} = A\mathfrak{O}^{k}\mathfrak{O}^{i}(\mathfrak{O}^{k}\mathfrak{O}^{i})^{-1} = A\mathfrak{O}^{k}$ =A and $(\mathfrak{O}^k\mathfrak{O}^i)^{-1}A = (\mathfrak{O}^k\mathfrak{O}^i)^{-1}\mathfrak{O}^k\mathfrak{O}^iA = \mathfrak{O}^iA = A$. Thus $(\mathfrak{O}^k\mathfrak{O}^i)^{-1}$ is an identity of \mathfrak{N}_{ik} . Again by Lemma 1, $(A \mathfrak{O}^i)^{-1} (\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ is an $\mathfrak{O}^i - \mathfrak{O}^k$ ideal. And we have that $A(A\mathbb{Q}^i)^{-1}(\mathbb{Q}^k\mathbb{Q}^i)^{-1} = A\mathbb{Q}^i(A\mathbb{Q}^i)^{-1}(\mathbb{Q}^k\mathbb{Q}^i)^{-1}$ $= \mathfrak{O}^{i}(\mathfrak{O}^{k}\mathfrak{O}^{i})^{-1} = (\mathfrak{O}^{k}\mathfrak{O}^{i})^{-1} \text{ and } (A\mathfrak{O}^{i})^{-1}(\mathfrak{O}^{k}\mathfrak{O}^{i})^{-1}A = (A\mathfrak{O}^{i})^{-1}A = (A\mathfrak{O}^{i})^{-1}A\mathfrak{O}^{k}$ $= (A \mathfrak{Q}^i)^{-1} A \mathfrak{Q}^k \mathfrak{Q}^i (\mathfrak{Q}^k \mathfrak{Q}^i)^{-1} = (A \mathfrak{Q}^i)^{-1} A \mathfrak{Q}^i (\mathfrak{Q}^k \mathfrak{Q}^i)^{-1} = \mathfrak{Q}^i (\mathfrak{Q}^k \mathfrak{Q}^i)^{-1} = (\mathfrak{Q}^k \mathfrak{Q}^i)^{-1}.$ Thus A has an inverse in \mathfrak{N}_{ik} . For the second part, we shall define the mapping $f: \mathfrak{N}_{ii} \to \mathfrak{N}_{ik}$ given by $f(C^{ii}) = C(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$. If $C^{ii}(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ = $D^{ii}(\mathfrak{O}^k\mathfrak{O}^i)^{-1}$, then we have $C = C\mathfrak{O}^i = C(\mathfrak{O}^k\mathfrak{O}^i)^{-1}\mathfrak{O}^k\mathfrak{O}^i = C(\mathfrak{O}^k\mathfrak{O}^i)^{-1}\mathfrak{O}^i$ $=D(\mathbb{O}^k\mathbb{O}^i)^{-1}\mathbb{O}^i=D$; hence f is injective. Let A be any $\mathbb{O}^i-\mathbb{O}^k$ -ideal. Then we have $A^{ik} = A(\mathbb{O}^k \mathbb{O}^i)^{-1} = A \mathbb{O}^i (\mathbb{O}^k \mathbb{O}^i)^{-1}$. Since $A \mathbb{Q}^i \in \mathfrak{N}_{ii}$, f And we have $(C^{ii}(\mathbb{O}^k \mathbb{O}^i)^{-1})(D^{ii}(\mathbb{O}^k \mathbb{O}^i)^{-1}) = C((\mathbb{O}^k \mathbb{O}^i)^{-1})$ is surjective. $(D(\mathbb{O}^k \mathbb{O}^i)^{-1}) = C(D(\mathbb{O}^k \mathbb{O}^i)^{-1}) = (CD)(\mathbb{O}^k \mathbb{O}^i)^{-1}$. Thus \mathfrak{N}_{ii} is isomorphic to \mathfrak{N}_{ik} as a group. Since the group \mathfrak{N}_{ii} is abelian, so is \mathfrak{N}_{ik} . The proof is complete.

Now we define prime ideals in \mathfrak{N}_{ik} as follows:

Definition. An $\mathbb{Q}^i - \mathbb{Q}^k$ -ideal Q is called *prime* if (1) $Q \subset (\mathbb{Q}^k \mathbb{Q}^i)^{-1}$ and (2) $A^{ik}B^{ik} \subseteq Q$ implies $A \subseteq Q$ or $B \subseteq Q$, where $A \subseteq (\mathbb{Q}^k \mathbb{Q}^i)^{-1}$ and $B \subseteq (\mathbb{Q}^k \mathbb{Q}^i)^{-1}$.

Lemma 2. If P^{ii} is prime ideal in \mathfrak{N}_{ii} , then $P(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ is a prime ideal in \mathfrak{N}_{ik} . Conversely, if Q^{ik} is a prime ideal in \mathfrak{N}_{ik} , then $Q\mathfrak{O}^i$ is a prime ideal in \mathfrak{N}_{ii} .

Proof. Suppose that $A^{ik}B^{ik} \subseteq P(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$, where $A \subseteq (\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ and $B \subseteq (\mathfrak{O}^k \mathfrak{O}^i)^{-1}$. Then we have $A \mathfrak{O}^i B \mathfrak{O}^i = AB \mathfrak{O}^i \subseteq P(\mathfrak{O}^k \mathfrak{O}^i)^{-1} \mathfrak{O}^i = P(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$. $\mathfrak{O}^k \mathfrak{O}^i = P \mathfrak{O}^i = P$. Since P is prime in \mathfrak{N}_{ii} , we have that $A \mathfrak{O}^i \subseteq P$ or $B \mathfrak{O}^i \subseteq P$. This implies that $A = A \mathfrak{O}^k = A \mathfrak{O}^k \mathfrak{O}^i (\mathfrak{O}^k \mathfrak{O}^i)^{-1} = A \mathfrak{O}^i (\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ $\subseteq P(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ or $B \subseteq P(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$. Suppose that $C^{ii}D^{ii} \subseteq Q^{ik} \mathfrak{O}^i$, where Cand D are integral in \mathfrak{N}_{ii} . Then we have $C(\mathfrak{O}^k \mathfrak{O}^i)^{-1}D(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ $= CD(\mathfrak{O}^k \mathfrak{O}^i)^{-1} \subseteq Q \mathfrak{O}^i (\mathfrak{O}^k \mathfrak{O}^i)^{-1} \subseteq Q$. Since Q is prime in \mathfrak{N}_{ik} , we have that $C(\mathfrak{O}^k \mathfrak{O}^i)^{-1} \subseteq Q$ or $D(\mathfrak{O}^k \mathfrak{O}^i)^{-1} \subseteq Q$. This implies $C = C(\mathfrak{O}^k \mathfrak{O}^i)^{-1} \mathfrak{O}^k \mathfrak{O}^i$

By Theorem 1 and Lemma 2, we have

Theorem 2. Every $\mathfrak{O}^i - \mathfrak{O}^k$ -ideal contained in $(\mathfrak{O}^k \mathfrak{O}^i)^{-1}$ can be uniquely written as a product of a finite number of prime ideals in \mathfrak{N}_{ik} . Moreover if $A^{ik}\mathfrak{O}^i = P_1^{ii}\cdots P_n^{ii}$ is the prime-factorization of $A\mathfrak{O}^i$ in \mathfrak{N}_{ii} , then $A^{ik} = (P_1(\mathfrak{O}^k\mathfrak{O}^i)^{-1})\cdots (P_n(\mathfrak{O}^k\mathfrak{O}^i)^{-1})$ is the prime-factorization of Ain \mathfrak{N}_{ik} and, if $C^{ii}(\mathfrak{O}^k\mathfrak{O}^i)^{-1} = Q_1^{ik}\cdots Q_m^{ik}$ is the prime-factorization of $C(\mathfrak{O}^k\mathfrak{O}^i)^{-1}$ in \mathfrak{N}_{ik} , then $C^{ii} = (Q_1\mathfrak{O}^i)\cdots (Q_m\mathfrak{O}^i)$ is the prime-factorization of C in \mathfrak{N}_{ii} .

References

- [1] K. Asano: The Theory of Rings and Ideals. Tokyo (1949) (in Japanese).
- [2] K. Asano and K. Murata: Arithmetical ideal theory in semigroups. Journ. Institute of Polytec. Osaka City Univ., Series A, 4 (1953).