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1. Introduction. T. Kato [1, 2] studied the Cauchy problem for
linear "hyperbolic" evolution equations in a general Banach space X"
(1.1) (du/dt)-FA(t)u(t)=O, u(s)--x, O_s_t_T(c,
where --A() is the generator of a (C0)-semigroup in X for each t. He
proved the basic existence theorem [1; Theorem 4.1] by the Cauchy’s
method analogous to ordinary differential equations. He posed a ques-
tion whether it is possible or not to prove the theorem by the osida
approximation method. In this paper we will answer the question
affirmatively under the assumptions of Kato [1; Theorem 4.1]. In 2
we treat the "stable" case about the family {A(t)} we study some prop-
erties of the Yosida approximation, then in 3 we prove the existence
theorem. Finally in 4 we give some comments how our arguments
are modified in the case of "quasi-stability" [2].

2. Theorem. We follow Kato [1] in notation and terminology.
Let X and Y be real Banach spaces with Y densely and continuously
embedded in X. We assume that --A($) is the generator of a (C0)-
semigroup on X. Further assume

( i ) {A(t)} is stable; i.e., there are constantn M,/ such that"
II(A(t) + )-... (A(t) +)- gM. (--fl)-

for 2fl and Ogtg... gtgT, k--1,2,....
(ii) Y is A(t)-admissible or each t; that is, the semigroup gen-

erated by --A(t) leaves Y invariant and forms a (C0)-semigroup on Y.
And if A(t) is the part of A(t) in Y, then (A(t)} is stable with some
constants/1, [1, p. 242].

(iii) YD(A(t)) for each t and A(t) is norm continuous from [0, T]
into B(Y, X).

Hereafter we assume fl,0 for simplicity.
A amily {U(t,s);O<_sgt<_T} is called the evolution operator for

{A(t)} if it satisfies the ollowing conditions"
(a) U(t, s) is strongly continuous (X) in s, t and, U(t, t)-I and

U(t, s)ll_< i. exp [/(t-- s)].
(b) U(t, r)= U(t, s)U(s, r),
(c) (/t)+ U(t, s)y I-- A(s)y or y e Y, 0

_
s< T.

(d) (/s)U(t, s)y=U(t, s)A(s)y for y e Y, O_s<_t_T.
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Then we give the definition of the Yosida approximation [3].
Definition 2.1. Under the assumption (i), the family A(t)}B(X)

is said to be the Yosida approximation for {A(t)} if for each e [0, T]
A(t)--2-[I--J(t)], J(t)=(I+2A(t))- e B(X),
For 2>0, ]fll, <1, A(t) is defined for all t e [0, T], bounded in

B(X) by (i), A(t), the Yosida approximation for A(t) is also defined for
each t, bounded in B(Y) by (ii), coincides with A(t) on Y [1; Prop. 2.3]
and therefore A(t) is strongly continuous (X) by (iii).

Then the evolution operator {U(t, s)} for {A(t)} is defined uniquely
by the solution of the Cauchy problem in X [4]"
(2.1) (d/dt)u(t, s, x)= --A(t)u(t, s, x), u(s, s, x)----x,
or O<_s_t_T, x e X,
(2.2) U(t, s)x =u(t, s, x).

Now we can state the theorem to be proved.
Theorem 2.2. Under the assumptions above there exists the

evolution operator {U(t, s)} for {A(t)}. Moreover U(t, s)converges to
U(t, s) strongly in B(X) uniformly for t, s as 20.

:o Proof. The evolution operator {V(t, s)} or {A(t)}, a step
function of t, is well defined as in 2, where t= It/]. . We first show
the following lemma.

Lemma :.1. The evolution operator V(t, s) converges to some
operator U(t, s)strongly in B(X) uniformly for t, s as 0 and {U(t, s)}
is the evolution operator for {A(t)}.

Then the theorem can be proved easily. This process is necessary
because we need uniform boundedness of V(t, s) in B(Y) but we can
tell nothing about uniform boundedness of U(t, s) in B(Y) for lack of
information about strong measurability of J(t) as a B(Y)-valued func-
tion.

Proof of Lemmao For 0, 21, 1, (t) is defined or all
t, piecewise constant and there exists the evolution operator for it, which
coincides with {V(t, s)} on Y by (ii).

Moreover V(t, s) satisfies the estimates"

(3.1)
(3.2) V(t, s)llr_/r, exp [(t-- s) / (1 2)], s_< t.
In fact, v(t, s, x)=exp [(t--s)/2]. V(t, s)x satisfies the following"

(3.3) (d/dt)v(t, s, x)--2-J(t)v(t, s, x), v(s, s, x)--x, t-,, 2,, ....
The estimate (3.1) follows by virtue of the stability assumption if we
express the solution of (3.3) by series; the estimate (3.2)is obtained
similarly.

Next we prove that {V/(t, s)y n e N}, y e Y, forms a Cauchy se-
quence in X uniformly for t, s. To this end we consider the following

equation obtained from the definition of V(t, s)"
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(8.4)
V(t, s)[A(s)J.(s.)-J.(s.)A,(s,)]. V,(s,

for sk2, skg, ska, k=1,2, ..., y Y, where a>0, aft<l, af<l,
s=[s/a].a and J.(s)=(I+aA(s))-. The parameter a is independent
of 2, g and determined later in (3.13).

Since the right hand side of (3.4) is piecewise continuous and uni-
formiy bounded in X, we can integrate (3.4) to gel

(/s)V(t, s)J.(s.)V(s, r)yds
(3.5)

.[’ V(t, s)[A(s)J.(s.)--J(s)A,(s,)]. V,(s, r)yds,

or rt, y e Y. Since s.=[s/a].a, we have from (3.5)
V,(t, r)y--V(t, r)y

=a[A(t)V,(t, r)y--V(t, r)A(r)y]

(3.6) + {V(t, r. + a)[J.(r + a)-J.(r.)]V,(r. +, r)y
+... + V(t, t.)[J(t.)-J.(t.-a)]. V,(t, r)y}

+
for rgt, y e Y.

To estimate the right hand side of (3.6) we use

(3.7) ]]J.(t+a)-J.(t)]]r.xgConst.a.sup ][A(t+a)--A(t)[r.x,

A(s).(s.) .(s.)A,(s,)i[.
(3.8) gconst. [ + + sup ].A(t’)-A(t).r.x].It’-tla++

The proof o (3.7) is easy, so omitted. To prove (3.8)we notice the
decomposition

A(s)J.(s.) J.(s.)A
(3.9) [A(s)-- A(s.)J(s.)]J(s.) + [A(s.)J(s.)J.(s.)

J.(s.)A(s.)J,(s.)] + J.(s.)[A(s.)J,(s.)-- A,(s,)].
Then (3.8) can be obtained with the aid of the estimates
(3.10) J]A(s)--A(s.)J(s)JJ.xgConst. sup [JA(t’)--A(t)l[.x,

It’-tl+a

(3.11)

(3.12) Const. sup IIn(t’)-n(t)ll,.
It-tla+

Hence by (3.7), (3.8) and uniform boundedness of V(t, s) in B(X)
and B(Y) (see (3.1), (3.2)), we get from (3.6)"

V,(t, r)y-- V(t, r)y
(3.13) g Const. [+ It’-tiN++

This means that {V/(t, r)y} forms a Cauchy sequence in X uni-
formly or t, r. Since Y is dense in X and V(t, r) is uniformly bounded
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in B(X)for 2, t, r, we conclude that V,(t, r)x converges strongly in X
to, say, U(t, r)x as 20 uniformly in t, r or each.x e X and U(t, r)x is
strongly continuous in X.

The conditions (a) and (b) of the evolution operator can be obtain-
ed form the corresponding relations of V(t, s) by passing to the limit
or limit infimum as 20. The condition (c) is also obtained i we notice
the relation

h-[V(t+h,t)y--y]=--h- V(t+h,s)A(s)yds, h>0, ye Y,

pass to the limit 0, and use continuity o U(t, s), A(t). The proo
o (d) and uniqueness of the evolution operator is the same as that o
Kato [1], so we may omit it.

Proof of the theorem. It suffices to prove that the difference
U(t, r)y--V(t, r)y converges to zero in X as 20 uniformly in t, r for
each y e Y. This follows from the relation

V(t, r)y-- U(t, r)y=[: U(t, s)[A(s)--A(s)]V(s, r)yds.

4. Remarks to "quasi.stable" case. In the quasi-stable case,
fl, are Lebesgue upper integrable unctions of t[2; p. 648]. Our
method also applies to this case, but we need more care about choice of
A(tn), n eN, and J(t), peN, where A(t), J(t) correspond to
A(t), J.(t.) in the stable case. We can assume without loss of general-
ity that fl, are Lebesgue integrable and greater than a positive con-
stant a.e., if necessary, replacing them by dominating integrable unc-
tions. Then we choose the Yosida approximation A(t) as ollows"

1 A(t) a.e., e N,A()=A(t)J(t), J(t)= I+
(t)

where (t)=max {(t), (t)}. he se unetion t of t mus be chosen
so that (t)(t) as nff in L [2;p. 651]. The details o the proo
may be omitted.
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