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12. Scattering Solutions Decay at least Logarithmically

By Minoru MURATA
Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kosaku YOSIDA, M. J. A,, Feb. 13, 1978)

1. Introduction. In this note we study the asymptotic behavior
as t—oo of scattering solutions of the equation
1 ou y
w1 1 —87_Hu_(13(1)wr jglqj(x)Q,(D))u
u(x, 0)=¢(x).
(u is called a scattering solution if ¢ is orthogonal to any eigenfunction
of H.) Here we assume

(A.1) P(%) is an elliptic polynomial of degree m with real coeffi-
cients, which is bounded from below ;

(A.2) Q,©®) is a polynomial of degree less than m—1;

(A.3) g (@)e**® e L. (R") for some a>0;

(A.4) the operator > I, q,(2)Q,;(D) is formally self-adjoint.
Under the assumptions (A.1)-(A.4) (hereafter referred to as (A)), the
operator H with domain H™(R"), the usual Sobolev space, is self-
adjoint in L,(R"™).

By virtue of the result due to Kuroda [1] it follows from (A) that
a scattering solution of (1.1) decays locally. Our problem is to study
at what rate the solution decays. In [2] we investigated the problem
under the condition (A.3)’ milder than (A.3).

(A.3)Y q,@)A+|xP)*eL.(R") for some s>1/2.

But in order to give an answer we assumed the non-existence of “gen-
eralized eigenvalues” of H. In this note, applying the method of
Vainberg [5], we remove such assumption under the condition (A.3).
(See also [3], in which a rather abstract answer was given without such
assumption under the condition (A.3)’.) Our result is a generalization
of that of Rauch [4], which states that a scattering solution of
Schrodinger’s equation in R® decays like ¢, We shall show that a
scattering solution of Schrodinger’s equation in R** decays at least
logarithmically.

2. Results. Let 4 be the set of all critical values of P(¢): 4
={P(&); & e R", grad P(¢)=0}. (We note that 4 is a finite set.) Let
II,={zeC; +Imz2>0}and D, =C\{2+1iu; 2c 4, F¢=0}. Let I be the
Hilbert space of all holomorphic functions on the tublar domain R”
XiB,CC" (By={y € R*; |y|<a} withnorm | £ | g=[ & + in)lracamns < -
Let X=B(9, 4*) be the Banach space of all bounded linear operators
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from 4 to H*. To state our theorem we introduce the following con-
dition (B), which is satisfied in many interested cases.
(B) Let h.,2) (j=0,1,.--,N,zell,) be the multiplication opera-
tors from [ to H*: h.(2)=P(E)—2)7", h.,(2)=Q4&) (P¢)—2)~" (=1,
-+, N). Then there exists for any 2 € 4 a complex neighborhood U, of
2 such that &, ;(2) admits a holomorphic extension onto U,N D, and has
the form

@) h@=3 [T At n|togwy,  w=e—2
k=0 Li=1

where A% e X, f%,(0) is an X-valued holomorphic function in a neigh-
borhood of zero, A%! (jx0) and f%,(0) (kx0,720) are of finite rank,
and >0 and K=>0 are integers independent of 2. (Since 4 is a finite
set, we may assume without loss of generality that » and K are inde-
pendent of 2.)

Theorem 2.1. Let (A) and (B) be satisfied. Then there existinte-
gers 6=0 and y such that for any ¢ which is orthogonal to all eigen-
functions of H
@.2) ety |, g <Clt1 " log™ [t]] €= 0llummy  [E>2.

Here y>0 when ¢=0, and y=0 when K=0.

Remark 2.2. The integers ¢ and y can be determined as follows.
Let C%, be the operator given in the equality (3.1) (see Lemma 3.2 in §3).
Let I=U,eq I, and I,={G, 7); ¢+ 7>0, C¥,>0}\{¢/r is a positive integer
and p;i=j5}. Then
2.3) g=min {i; (1, 7) € I for some j}.

Let 6 be a number which is equal to 1 when ¢/ is a positive integer
and equal to 0 otherwise. Then
2.4 y=min {y,; 1€ 4}, r,=min {j+o6—p,0; (o, €L}

Example 2.3. Let P(&) be a homogeneous elliptic polynomial of
degree m, and let q(x) be a real-valued function with q(x)e*'#! ¢ L_(R").
Let H=P(D)+ q(x). Then the estimate (2.2) holds. Moreover we have

(i) when » is odd, r=m, y=0, and ¢ is a positive integer with
g/m&N;

(ii) when n is even, r=m/2;

(iii) if m<n and zero is not a “generalized eigenvalue” (cf. [2]),
g/r=n/m and y=0;

(iv) if m=n=2 and the operator H satisfies the condition of
Theorem 7 in [5], ¢/r=1 and y=2.

Example 2.4. Let P& =(&P—1)*+|&"]* (&,&") e R” X R =R",
n"’=2), and let g(x) be a real-valued function with (D,q@)|+|q(x)))
el ¢ L (R"). Let H=P(D)+D,q9x)D,. Then the estimate (2.2)
holds. Moreover we have

(i) when »” is odd, r=4, y=0, and ¢ is a positive integer with
g/4&N;
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(ii) when n” is even, r=2;

(iii) if 0 and 1 are not “generalized eigenvalues”, o/r=1/2+n" /4,
and y=0.

3. Proof. For the proof of Theorem 2.1 we prepare four lemmas.
We denote by F',(z) the B(L,)-valued function e-¢!*/(H —2z)~le~¢'®! defined
in I1,.

Lemma 3.1. Let (A) be satisfied. Then F.(z) is extended mero-
morphically to a complex neighborhood of R\A. The poles in R\A are
simple and contained in a,(H) the point spectrum of H.

Proof. For the proof of the first half we have only to remark that
the X-valued function (P(¢)—2)~! admits a holomorphic extension onto
a neighborhood of R\/ (use the equation (A.1) in [1]), and that F~.4
=H={f; | flla=Ie"" A +|2])~ ™" f(@)||,gn <o} (cf. [8]). We leave
the proof of the latter half to the reader (cf. [1] and [4]).

Lemma 3.2. Let (A) and (B) be satisfied. Then there exists for
any A€ A a complex neighborhood U, of A such that F.(z) admits o
holomorphic extension onto U,N D, and has the form
B.1) F.@)=w" tio ;ﬁocga[wl/f(log w)rdilog w)~,  w=z—2,
where C¥, e B(L,), p, 18 an integer, and the double series converges in
the norm uniformly on U,ND,. Moreover we have that p,=0 and
C¥,=0 (§x0) when K=0.

Proof. We get the result along the line given in Lemma 1 in [5].

Lemma 3.3. Let (A) be satisfied. Then there exist b>0 and
¢>0 such that F.(2) is holomorphic in {z € C; |Im z|<b |Re z|'"™—¢},
in which
3.2) [F® @) lpry =Cr |Re z[-**Da-Vm 0 =0,1, - ..

Proof. Since |Im z¥™|<d in {{Im z|<md|Rez['"™}, we get the
result using the variation of Lemma 5.1 in [2]. (We assumed only for
this lemma that deg Q,<m—2.)

Lemma3.4. LetzeC,keZ,andl=0,1,.... Thenthe following
estimate holds for any [t|>2.

lEdZTU: (@-£i0)* log* (xi—iO)e“”dx]\
3.3) <{C []7Re =11 log* |¢], 2x0,1, ...
=\C|t| ®=~'~tlog*!|t], 2=0,1, - - - and k0.
Proof. We shall prove (3.3) only in the case k=—75<0. If
Re 2<—(j+1), then we get (3.3) using the facts:
(1) F T (@xi0))E)=e* =" (—2)t"1;

(il) (@+i0)* log? (xifzo>=j”°° W iy rdw;
v G=D!
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l
(iid) %[F‘l(iy—-Z)] <Ce=PWl [y[fe+i2log! |y|, yeR, |y|>2,

1=0,1, ---.
The estimate (3.8) for Re 2= —(j+1) is an easy corollary of the above
case.
Now let us prove the theorem. We set

G.(=F.(y)— ZH)UA{[(Z—/z)Fi(z)] o=} — )7

#E€ap(
M@y =@r) (G, () —G_(¥), E=e2"\,
Let y be a Cy-function which is equal to one on [— R, R] for some suffi-
ciently large B. Let ¢ be orthogonal to any eigenfunction of H and
E-'9e L,(R"). Then we obtain the following equality along the line
given in [2] and [4].

Betp=["_ ery@)M@E - 'pdy

— I - e“”ggz‘[(l—x(y))MW)lE“wd%

This combined with Lemma 3.4 proves the theorem.

3.4)
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