12. Scattering Solutions Decay at least Logarithmically

By Minoru Murata
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, m. J. A., Feb. 13, 1978)

1. Introduction. In this note we study the asymptotic behavior as $t \rightarrow \infty$ of scattering solutions of the equation

$$
\left\{\begin{array}{l}
\frac{1}{i} \frac{\partial u}{\partial t}=H u=\left(P(D)+\sum_{j=1}^{N} q_{j}(x) Q_{j}(D)\right) u \tag{1.1}\\
u(x, 0)=\varphi(x)
\end{array}\right.
$$

(u is called a scattering solution if φ is orthogonal to any eigenfunction of H.) Here we assume
(A.1) $P(\xi)$ is an elliptic polynomial of degree m with real coefficients, which is bounded from below;
(A.2) $Q_{j}(\xi)$ is a polynomial of degree less than $m-1$;
(A.3) $\quad q_{j}(x) e^{2 a|x|} \in L_{\infty}\left(R^{n}\right)$ for some $a>0$;
(A.4) the operator $\sum_{j=1}^{N} q_{j}(x) Q_{j}(D)$ is formally self-adjoint.

Under the assumptions (A.1)-(A.4) (hereafter referred to as (A)), the operator H with domain $H^{m}\left(\boldsymbol{R}^{n}\right)$, the usual Sobolev space, is selfadjoint in $L_{2}\left(\boldsymbol{R}^{n}\right)$.

By virtue of the result due to Kuroda [1] it follows from (A) that a scattering solution of (1.1) decays locally. Our problem is to study at what rate the solution decays. In [2] we investigated the problem under the condition (A.3)' milder than (A.3).
(A.3) $\quad q_{j}(x)\left(1+|x|^{2}\right)^{s} \in L_{\infty}\left(R^{n}\right)$ for some $s>1 / 2$.

But in order to give an answer we assumed the non-existence of "generalized eigenvalues" of H. In this note, applying the method of Vainberg [5], we remove such assumption under the condition (A.3). (See also [3], in which a rather abstract answer was given without such assumption under the condition (A.3)'.) Our result is a generalization of that of Rauch [4], which states that a scattering solution of Schrödinger's equation in R^{3} decays like $t^{-1 / 2}$. We shall show that a scattering solution of Schrödinger's equation in $R^{2 k}$ decays at least logarithmically.
2. Results. Let Λ be the set of all critical values of $P(\xi): \Lambda$ $=\left\{P(\xi) ; \xi \in R^{n}, \operatorname{grad} P(\xi)=0\right\}$. (We note that Λ is a finite set.) Let $\Pi_{ \pm}=\{z \in C ; \pm \operatorname{Im} z>0\}$ and $D_{ \pm}=C \backslash\{\lambda+i \mu ; \lambda \in \Lambda$, $\mp \mu \geqq 0\}$. Let \mathscr{G} be the Hilbert space of all holomorphic functions on the tublar domain \boldsymbol{R}^{n} $\times i B_{a} \subset C^{n}\left(B_{a}=\left\{\eta \in \boldsymbol{R}^{n} ;|\eta|<a\right\}\right)$ with norm $\|f\|_{\mathscr{H}}=\|f(\xi+i \eta)\|_{L_{2}\left(\boldsymbol{R}^{n} \times B_{a}\right)}<\infty$. Let $X=\boldsymbol{B}\left(\mathscr{H}, \mathscr{G}^{*}\right)$ be the Banach space of all bounded linear operators
from \mathscr{H} to \mathscr{I}^{*}. To state our theorem we introduce the following condition (B), which is satisfied in many interested cases.
(B) Let $h_{ \pm j}(z)\left(j=0,1, \cdots, N, z \in \Pi_{ \pm}\right)$be the multiplication operators from \mathcal{H} to $\mathscr{H}^{*}: h_{ \pm 0}(z)=(P(\xi)-z)^{-1}, h_{ \pm j}(z)=Q_{j}(\xi)(P(\xi)-z)^{-1}(j=1$, $\cdots, N)$. Then there exists for any $\lambda \in \Lambda$ a complex neighborhood U_{λ} of λ such that $h_{ \pm j}(z)$ admits a holomorphic extension onto $U_{\lambda} \cap D_{ \pm}$and has the form

$$
\begin{equation*}
h_{ \pm j}(z)=\sum_{k=0}^{K}\left[\sum_{l=1}^{r-1} A_{ \pm j}^{k, l} w^{-l / r}+f_{ \pm j}^{k}\left(w^{1 / r}\right)\right](\log w)^{k}, \quad w=z-\lambda, \tag{2.1}
\end{equation*}
$$

where $A_{ \pm j}^{k, l} \in X, f_{ \pm j}^{k}(\zeta)$ is an X-valued holomorphic function in a neighborhood of zero, $A_{ \pm j}^{k, l}(j \neq 0)$ and $f_{ \pm j}^{k}(0)(k \neq 0, j \neq 0)$ are of finite rank, and $r>0$ and $K \geqq 0$ are integers independent of λ. (Since Λ is a finite set, we may assume without loss of generality that r and K are independent of λ.)

Theorem 2.1. Let (A) and (B) be satisfied. Then there exist integers $\sigma \geqq 0$ and γ such that for any φ which is orthogonal to all eigenfunctions of H
(2.2) $\left\|e^{-a|x|} e^{i t H} \varphi\right\|_{L_{2}\left(R^{n}\right)} \leqq C|t|^{-\sigma / r} \log ^{-r}|t|\left\|e^{a|x|} \varphi\right\|_{L_{2}\left(R^{n}\right)}, \quad|t|>2$.

Here $\gamma>0$ when $\sigma=0$, and $\gamma=0$ when $K=0$.
Remark 2.2. The integers σ and γ can be determined as follows. Let $C_{ \pm \lambda}^{i j}$ be the operator given in the equality (3.1) (see Lemma 3.2 in §3). Let $I=\bigcup_{\lambda \in \Lambda} I_{\lambda}$ and $I_{\lambda}=\left\{(i, j) ; i+j>0, C_{ \pm \lambda}^{i j} \neq 0\right\} \backslash\{i / r$ is a positive integer and $\left.p_{\lambda} i=j\right\}$. Then
(2.3) $\quad \sigma=\min \{i ;(i, j) \in I$ for some $j\}$.

Let δ be a number which is equal to 1 when σ / r is a positive integer and equal to 0 otherwise. Then
(2.4) $\quad \gamma=\min \left\{\gamma_{\lambda} ; \lambda \in \Lambda\right\}, \quad \gamma_{\lambda}=\min \left\{j+\delta-p_{\lambda} \sigma ;(\sigma, j) \in I_{\lambda}\right\}$.

Example 2.3. Let $P(\xi)$ be a homogeneous elliptic polynomial of degree m, and let $q(x)$ be a real-valued function with $q(x) e^{2 a|x|} \in L_{\infty}\left(\boldsymbol{R}^{n}\right)$. Let $H=P(D)+q(x)$. Then the estimate (2.2) holds. Moreover we have
(i) when n is odd, $r=m, \gamma=0$, and σ is a positive integer with $\sigma / m \oplus N$;
(ii) when n is even, $r=m / 2$;
(iii) if $m<n$ and zero is not a "generalized eigenvalue" (cf. [2]), $\sigma / r=n / m$ and $\gamma=0$;
(iv) if $m=n=2$ and the operator H satisfies the condition of Theorem 7 in [5], $\sigma / r=1$ and $\gamma=2$.

Example 2.4. Let $P(\xi)=\left(\left|\xi^{\prime}\right|^{2}-1\right)^{2}+\left|\xi^{\prime \prime}\right|^{4} \quad\left(\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in \boldsymbol{R}^{n^{\prime}} \times \boldsymbol{R}^{n^{\prime \prime}}=\boldsymbol{R}^{n}\right.$, $n^{\prime \prime} \geqq 2$), and let $q(x)$ be a real-valued function with $\left(\left|D_{n} q(x)\right|+|q(x)|\right)$ $\cdot e^{2 a|x|} \in L_{\infty}\left(\boldsymbol{R}^{n}\right)$. Let $H=P(D)+D_{n} q(x) D_{n}$. Then the estimate (2.2) holds. Moreover we have
(i) when $n^{\prime \prime}$ is odd, $r=4, \gamma=0$, and σ is a positive integer with $\sigma / 4 \oplus N ;$
(ii) when $n^{\prime \prime}$ is even, $r=2$;
(iii) if 0 and 1 are not "generalized eigenvalues", $\sigma / r=1 / 2+n^{\prime \prime} / 4$, and $\gamma=0$.
3. Proof. For the proof of Theorem 2.1 we prepare four lemmas. We denote by $\boldsymbol{F}_{ \pm}(z)$ the $\boldsymbol{B}\left(L_{2}\right)$-valued function $e^{-a|x|}(H-z)^{-1} e^{-a|x|}$ defined in $\Pi_{ \pm}$.

Lemma 3.1. Let (A) be satisfied. Then $\boldsymbol{F}_{ \pm}(z)$ is extended meromorphically to a complex neighborhood of $\boldsymbol{R} \backslash \Lambda$. The poles in $\boldsymbol{R} \backslash \Lambda$ are simple and contained in $\sigma_{p}(H)$ the point spectrum of H.

Proof. For the proof of the first half we have only to remark that the X-valued function $(P(\xi)-z)^{-1}$ admits a holomorphic extension onto a neighborhood of $\boldsymbol{R} \backslash \Lambda$ (use the equation (A.1) in [1]), and that $\mathcal{F}^{-1} \mathcal{H}$ $=\boldsymbol{H}=\left\{f ;\|f\|_{\boldsymbol{H}}=\left\|e^{a|x|}(1+|x|)^{-(n+1) / 4} f(x)\right\|_{L_{2}\left(R^{n}\right)}<\infty\right\}$ (cf. [3]). We leave the proof of the latter half to the reader (cf. [1] and [4]).

Lemma 3.2. Let (A) and (B) be satisfied. Then there exists for any $\lambda \in \Lambda$ a complex neighborhood U_{λ} of λ such that $F_{ \pm}(z)$ admits a holomorphic extension onto $U_{\lambda} \cap D_{ \pm}$and has the form

$$
\begin{equation*}
F_{ \pm}(z)=w^{-1} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} C_{ \pm \lambda}^{i j}\left[w^{1 / r}(\log w)^{p}\right]^{i}(\log w)^{-j}, \quad w=z-\lambda, \tag{3.1}
\end{equation*}
$$

where $C_{ \pm \lambda}^{i j} \in \boldsymbol{B}\left(L_{2}\right), p_{\lambda}$ is an integer, and the double series converges in the norm uniformly on $U_{\lambda} \cap D_{ \pm}$. Moreover we have that $p_{\lambda}=0$ and $C_{ \pm \lambda}^{i j}=0(j \neq 0)$ when $K=0$.

Proof. We get the result along the line given in Lemma 1 in [5].
Lemma 3.3. Let (A) be satisfied. Then there exist $b>0$ and $c>0$ such that $F_{ \pm}(z)$ is holomorphic in $\left\{z \in C ;|\operatorname{Im} z|<b|\operatorname{Re} z|^{1-1 / m}-c\right\}$, in which

$$
\begin{equation*}
\left\|F_{ \pm}^{(k)}(z)\right\|_{B\left(L_{2}\right)} \leqq C_{k}|\operatorname{Re} z|^{-(k+1)(1-1 / m)}, \quad k=0,1, \cdots \tag{3.2}
\end{equation*}
$$

Proof. Since $\left|\operatorname{Im} z^{1 / m}\right|<d$ in $\left\{|\operatorname{Im} z|<m d|\operatorname{Re} z|^{1-1 / m}\right\}$, we get the result using the variation of Lemma 5.1 in [2]. (We assumed only for this lemma that $\operatorname{deg} Q_{j} \leqq m-2$.)

Lemma 3.4. Let $z \in C, k \in Z$, and $l=0,1, \cdots$. Then the following estimate holds for any $|t|>2$.

$$
\begin{align*}
& \left|\frac{d^{l}}{d t^{l}}\left[\int_{-\infty}^{\infty}(x \pm i 0)^{z} \log ^{k}(x \pm i 0) e^{i t x} d x\right]\right| \\
& \quad \leqq\left\{\begin{array}{l}
C|t|^{-\mathrm{Re} z-1-l} \log ^{k}|t|, \quad z \neq 0,1, \ldots \\
C|t|^{-\mathrm{Re} z-1-l} \log ^{k-1}|t|, z=0,1, \cdots \text { and } k \neq 0 .
\end{array}\right. \tag{3.3}
\end{align*}
$$

Proof. We shall prove (3.3) only in the case $k=-j<0$. If $\operatorname{Re} z<-(j+1)$, then we get (3.3) using the facts:
(i) $\mathscr{F}^{-1}\left((x \pm i 0)^{z}\right)(t)=e^{ \pm i(\pi / 2) z} \Gamma^{-1}(-z) t_{\mp}^{z-1}$;
(ii) $\quad(x \pm i 0)^{z} \log ^{-j}(x \pm i 0)=\int_{0}^{\mp i \infty} \frac{w^{j-1}}{(j-1)!}(x \pm i 0)^{z-w} d w$;
(iii) $\left|\frac{d^{l}}{d y^{l}}\left[\Gamma^{-1}(i y-z)\right]\right| \leqq C_{l} e^{(\pi / 2)|y|}|y|^{\mid \mathbb{R} z+1 / 2} \log ^{l}|y|, \quad y \in \boldsymbol{R},|y|>2$, $l=0,1, \cdots$.
The estimate (3.3) for $\operatorname{Re} z \geqq-(j+1)$ is an easy corollary of the above case.

Now let us prove the theorem. We set

$$
\begin{aligned}
G_{ \pm}(y) & =F_{ \pm}(y)-\sum_{\mu \in o p(H) \cup \Lambda}\left\{\left.\left[(z-\mu) F_{ \pm}(z)\right]\right|_{z=\mu}\right\}(y-\mu)^{-1}, \\
M(y) & =(2 \pi i)^{-1}\left(G_{+}(y)-G_{-}(y)\right), E=e^{-a|x|} .
\end{aligned}
$$

Let χ be a C_{0}^{∞}-function which is equal to one on $[-R, R]$ for some sufficiently large R. Let φ be orthogonal to any eigenfunction of H and $E^{-1} \varphi \in L_{2}\left(\boldsymbol{R}^{n}\right)$. Then we obtain the following equality along the line given in [2] and [4].

$$
\begin{align*}
E e^{i t H} \varphi= & \int_{-\infty}^{\infty} e^{i t y} \chi(y) M(y) E^{-1} \varphi d y \\
& -t^{-2} \int_{-\infty}^{\infty} e^{i t y} \frac{d^{2}}{d y^{2}}[(1-\chi(y)) M(y)] E^{-1} \varphi d y \tag{3.4}
\end{align*}
$$

This combined with Lemma 3.4 proves the theorem.

References

[1] Kuroda, S. T.: Scattering theory for differential operators. I, II. J. Math. Soc. Japan, 25, 75-104, 222-234 (1973).
[2] Murata, M.: Rate of decay of local energy and spectral properties of elliptic operators (to appear).
[3] -: Rate of decay of local energy and wave operators for symmetric systems (to appear).
[4] Rauch, J.: Local decay of scattering solutions to Schrödinger's equation (to appear).
[5] Vainberg, B. R.: On exterior elliptic problems polynomially depending on a spectral parameter, and asymptotic behavior for large time of solutions of nonstationary problems. Math. USSR Sbornik, 21 (2), 221-239 (1973).

