21. The Groups $J_{g}(*)$ for Compact Abelian Topological Groups G^{*}

By Katsuo KAWAKUBO Universität Bonn and Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., March 13, 1978)

§1. Introduction. In [4], we defined $J_G(X)$ for a compact group G and for a compact G-space X. When X is a point, we denote it by $J_G(*)$. Similar groups JO(G) were defined and studied by Atiyah and Tall [2], Snaith [7], and Lee and Wasserman [5]. Our definition is more rigid than those of JO(G) in [2], [5], [7] and is given from the geometrical point of view as follows.

Two orthogonal representation spaces V, W of a compact topological group G are said to be *J*-equivalent if there exist an orthogonal representation space U and a *G*-homotopy equivalence $f: S(V \oplus U)$ $\rightarrow S(W \oplus U)$ where $S(V \oplus U)$ and $S(W \oplus U)$ denote the unit spheres in $V \oplus U$ and $W \oplus U$ respectively. Then the group $J_G(*)$ is defined as the quotient of the orthogonal representation ring RO(G) by the the subgroup

 $T_{g}(*) = \{V - W | V \text{ is } J \text{-equivalent to } W\}.$

The natural epimorphism $RO(G) \rightarrow J_G(*)$ is also denoted by J_G .

The purpose of the present paper is to announce the group structure of $J_G(*)$ for G an arbitrary compact abelian topological group (Theorem 1).

In a forthcoming paper, we shall study $J_G(*)$ for G an arbitrary *p*-group.

The full exposition and proofs will also appear later.

§2. The groups $J'_{Z_n}(*)$. Let *n* be an integer greater than one and $n=2^k \cdot p_1^{r(1)} \cdots p_t^{r(k)}$ be the prime decomposition of *n*. Denote by Z_n the cyclic group Z/nZ of order *n*. Then we define a group $J'_{Z_n}(*)$ as follows.

Case 1. $k \ge 2$. We set

$$J'_{Z_n}(*) = Z \oplus Z_{2^{k-2}} \oplus \bigoplus_{i=1}^{t} Z_{(p_i^{r(i)} - p_i^{r(i)-1})}$$

Case 2. k=0 or 1. we set

$$J'_{Z_n}(*) = Z \oplus \left\{ \bigoplus_{i=1}^{t} Z_{(p_i^{r(i)} - p_i^{r(i)} - 1)} \right\} / Z_2$$

where the inclusion of Z_2 into

^{*)} Research partially supported by S. F. B. grant Bonn and Fūjukai grant.

The Groups $J_G(*)$

No. 3]

$$\bigoplus_{i=1}^{t} Z_{(p_i^{r(i)} - p_i^{r(i)-1})} \text{ is given by } 1 \mapsto \bigoplus_{i=1}^{t} \frac{p_i^{r(i)} - p_i^{r(i)-1}}{2}.$$

§3. The groups $J_G(*)$. Let G be a compact abelian topological group and F_0 (resp. F_1) be the family of all closed subgroups $H (\neq G)$ of G such that G/H is isomorphic to the circle group S^1 (resp. a finite cyclic group). Then we have

Theorem 1. We have the following isomorphism $J_G(*) \cong Z \oplus Z(F_0) \oplus \bigoplus_{H \in F_1} J'_{G/H}(*)$

where $Z(F_0)$ denotes the free abelian group generated by F_0 and $J'_{G/H}(*)$ is the group given in §2.

Corollary 2. Let V, W be orthogonal G-representation spaces. Then S(V) is G-homotopy equivalent to S(W) if and only if V is J-equivalent to W.

§4. Normal representations of the fixed point sets of Ghomotopy equivalent manifolds. Let G be a compact Lie group and M_1, M_2 be closed smooth G-manifolds. Denote by F_i^{μ} each component of the fixed point set of M_i (i=1,2). Suppose that we are given a Ghomotopy equivalence $f: M_1 \rightarrow M_2$. Then the set $\{F_1^{\mu}\}$ of connected components is in one to one correspondence with the set $\{F_2^{\mu}\}$ such that $f(F_1^{\mu}) = F_2^{\mu}$. Denote by V_i^{μ} the normal representation of F_i^{μ} in M_i . Then we proved in [4] that V_1^{μ} is J-equivalent to V_2^{μ} . Therefore by combining this theorem and Corollary 2, we have

Theorem 3. When G is a compact abelian Lie group, $S(V_1^{\mu})$ and $S(V_2^{\mu})$ are G-homotopy equivalent.

§5. Equivariant Adams conjecture. In this section, we consider as a special case of §3 abelian *p*-group actions and express $J_G(*)$ in terms of the equivariant Adams operations. Let *p* be an odd prime positive integer and *r* be a positive integer. Let *G* be an abelian *p*group of order p^r . Denote by α a primitive root mod p^r . Let Ψ^s : $RO(G) \rightarrow RO(G)$ be the *s*-th Adams operation [2], [5].

Definition. Denote by WO(G) the subgroup of RO(G) generated by the elements

$$\{\Psi^{\alpha^i}(x) - i\Psi^{\alpha}(x) + (i-1)x\}$$

where $x \in RO(G)$, $i=2, 3, \dots, p^r - p^{r-1}$.

Then as a special case of Theorem 1, we have

Theorem 4. $J_G(*) \cong RO(G)/WO(G)$.

Remark. Theorems 1 and 4 show that $J_G(*)$ involves many torsion groups in general and the equivariant Adams conjecture does not hold in general in the form similar to the non-equivariant case [1], [3], [6]. These properties contrast with those of JO(G) [2], [5], [7].

K. KAWAKUBO

References

- [1] Adams, J. F.: On the groups J(X) I. Topology, 2, 181–195 (1963).
- [2] Atiyah, M. F., and Tall, D. O.: Group representations, λ-rings and the J-homomorphisms. Topology, 8, 253-297 (1969).
- [3] Becker, J. C., and Gottlieb, D. H.: The transfer map and fiber bundles. Topology, 14, 1-12 (1975).
- [4] Kawakubo, K.: Compact Lie group actions and fiber homotopy type (to appear).
- [5] Lee, C. N., and Wasserman, A. G.: On the groups JO(G). Memoirs of A. M. S., **159** (1975).
- [6] Quillen, D.: The Adams conjecture. Topology, 10, 67-80 (1971).
- [7] Snaith, V. P.: J-equivalence of group representations. Proc. Camb. Phil. Soc., 70, 9-14 (1971).