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1. Introduction. The aim o this note is to construct, ollow-
ing Feynman’s idea, the undamental solution of the initial value prob-
lem or time dependent SchrSdinger equation

( ) - - - - u(t, x)+ v(t, x)u(t, x)=0

or (t, x) e R R and
( 2 ) u(s, x) =(x).
Here =it/- is a purely imaginary parameter and t/is a small param-
eter 0 t/4< 1. The potential V(t, x) is assumed to satisfy the following
two conditions.

(V-I) V(t, x) is a real valued unction which is continuous in
t e R and infinitely differentiable in x e R.

(V-II) For any multi-index a with length [1_>2, there is a con-
tinuous positive function C.(t) o t such that

for any x e R.
Feynman’s path integral hs been discussed by many authors.

See, tor examples, Feynman [3], Nelson [8], It5 [6], Fujiwara [4],
Albeverio-Krohn [1], Keller-McLaughlin [7] and their references.
Since we use L-theory o oscillatory integral transforms, discussions of
the present note seem to contain new results. In particular, we can
prove that the sequence of operators which approximates the Feynman
path integral converges not merely in strong topology, but also in the
uniform operator topology. (In this respect, see [7].)

Assumptions (V-I) and (V-II) are rather severe. However, to1-
lowing examples satisfy them.

1) V(t, x)=, a(t)x, a(t) being real and continuous function
of t. If, in particular, V(t, x)=]xl, this is the potential of a Harmonic
oscillator. Since positivity of V(t,x) is not assumed, V(t, x)=--Ixl
also satisfies (V-I) and (V-II).

2) V(t, x) is a smooth potential of long range.
3) V(t, x) is a smooth oscillatory or a periodic potential.
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2. Parametrix. The classical mechanics corresponding to (1)
is described by Lagrangean unction

( 4 ) L(t, x, 2)=-=]2 --V(t, x)

and Euler’s equation

(5) d 3L 3L
dt c x

with initial value
(6) xl__=y 1__=.
Let x(t, s, y, ) denote the solution of this equation.

Let T be an arbitrarily fixed positive number. We can easily prove
the ollowing

Proposition 1o Assume that V(t, x) satisfies (V-I) and (V-II).
Then there exists a positive constant (T) such that the mapping
( 7 ) R -x=x(t, s, y, ) e R
is a global diffeomorphisms of R provided that IriS_ T, ]s] g T and
g3(T).

By the inverse mapping o (7), we consider =(t, s, x, y) as a
unction o (t, s, x, y) eRR. The curve
( 8 ) ; x(, s, y, (t, s, x, y))
is the unique classical orbit starting y at t=s and arriving at x at t= t.

The classical action along the curve is

( 9 ) S(t, s, x, y)=[[ L(a, x(a), 2(a))da,

where the integral is taken along the curve . The parametrix e(2, t, s,
x, y) is o the orm
(10) e(, t, s, x, y)= 2(Ls)] a(, t, s, x, y)es(t,,,),

where

(11)

with any N_> 0.
tion

a(,, t, s, x, y)= ,-a(t, s, x, y)

Each a(t, s, x, y) is determined by the transport equa-

O--a + -S(t s, x, y) Oa_
t ax(12)

( n )aJ+-daJ 1=0+_1 lS(t, s, x, y)- t-- s
or 0gjgN. Here we put a_0. The initial condition is
(13) ao(S, s, y, y)=l, a(s, s, y, y)=0 for lggN.

3. Main results. With the unction e(, t, s, x, y) of (10), we can
define a linear integral transformation E(2, t, s) as follows" For any

3(R),
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(14) E(, t, s)(x)--| e(2, t, s, x, y)o(y)dy.
R

This is an oscillatory integral transformation. (See for instances
Fujiwara [5] and Asada-Fujiwara [2].) Let denote the usual norm
in L(R).

Proposition 2. (i) There exists a positive constant such that
(5) E(, t, s) II_<
for any C(R) and Itl, Isl_T and

()
(16) s-lira E(], t, s)--

for any C(R). Here s-lim means the strong limit in L(R).
Let A; s----tott.... 4t=t be an arbitrary subdivision o the

interval [s, t]. We put
(17) (/) max t t

_
I.

IJN
Define
(lS)
and
(19) E(2, s, t)=E(2, s, t)E(2, t, t). E(2, t_, t),
for subdivision

We discuss the limit of E(2, t, s) and E(2, s, t) when (A)--0.
Theorem 1. Let s and t be arbitrarily fixed. Assume that V(t, x)

satisfies assumptions (V-I) and (V-II). Let N in (11) be larger or
equal to O. Then there exist two bounded linear operators U(2, t, s)
and U(2, s, t) of L(R) such that
(20) lim U(, t, s)--E(, t, s)]]=0,

()-0

(21) lim
()-.o

More precisely, there is a positive constant such that
(22) U(2, s, t)-E(2, s, t)]]_<.. [2]-- It--s].8()+er---
and
(23) U(2, t, s)-E(2, t, s)ll_’ I[-- It-s[ 6(/)+er’t-’--’.

is independent of and provided that 121>_1.
Remark 1. Operators U(, t, s) and U(, s, t) are independent

particular choice o N in (11) provided that N_>0. (22) and (23) imply

that convergence of (20) and (21) is aster if N is larger.

Remark 2. Theorem 1 holds even if V(t, x) satisfies weaker as-
sumptions below"

(V-I)’ V(t, x) is a real valued unction which is measurable in

(t, x)eRR and infinitely differentiable in x if t e R is fixed.

(V-II)’ For any multi-index a with length a 1>_2, the non nega-

tire measurable function of t defined by

M,(t)= sup
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(i)
(ii)
(iii)
(iv)

satisfies

is essentially bounded on every compact subset of R1.
Theorem 2. Under the same assumption as that of Theorem 1,

U(2, t, s)-1-- U(2, s, t). {U(2, t, s)}(t,s)R is a family of unitary operators
satisfying the following properties"

U(, s, s)=I.
U(2, t, s) is strongly continuous in t and s.
U(2, t, s)-- U(2, t, sl)U(2, s, s) for any t, s, s e R.
For any o e q(RD, let u(t, x)= U(2, t, s)(x). Then u(t, x)

(24)

and
u(s, x) =(x),

where A(2, t) is the minimal closed extension of - +V(t,x)

restricted to
4. Sketch of proof. Proposition 2 of 3 can be proved by L-theory o oscillatory integral transformations and stationary phase

method. (As to L-theory of oscillatory integral transformations see
[5], [2].)

In order to prove Theorems 1 and 2, we need the ollowings

Proposition 3. For any fixed TO, there is a positive constant
3(T)>0 such tha E(,t,s) has its bounded inverse if ]tl, Is]<_T and

Proposition 4. Let T and (T) be as above. If
and lt--si<_$(T), then we have the following estimates:

( ) llE(, t, s)*-E(2, t, 8)-xII<_T3 It-sl+ I1--,
(ii) IIE(, t, s)ll<exp (y I1--(iii) lIE(2, t, s)--E(,, t, s)E(,, s, s)ll<r 12l--l(It--sllN+

/ls--sl+=),
(iv) IIE(, t, s)E(, s, t)--IIl<= I1-- It--sl/,

where . is a positive constant independent of t, s, s and provided that
I1_>1.
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