29. Kodaira Vanishing Theorem and Chern Classes for ∂-Manifolds

By Yoshiki NORIMATSU Department of Mathematics, University of Tokyo (Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1978)

In the former part of this article, we shall formulate a certain kind of vanishing theorem, which may be a generalization of Kodaira vanishing theorem. In the latter part, we shall define Chern classes of any pair consisting of a compact complex manifold X and a divisor with simple normal crossings. Such a pair (X, D) may be called a ∂ -manifold. The vanishing theorem formulated here is a Kodaira vanishing theorem for ∂ -manifolds.

§1. Theorem 1. Let (X, D) be a ∂ -manifold and L an ample invertible sheaf on X. Then

i) $H^q(X, \Omega^p(\log D) \otimes L) = 0$, for $p+q \ge n+1$,

ii) $H^q(X, \Omega^p(\log D) \otimes L^{-1}) = 0$, for $p + q \le n$.

Here $n = \dim X$ and $\Omega^p(\log D)$ denotes the sheaf of logarithmic p-forms of X ([1], p. 31).

Proof. Let $D = \sum D_j$ be the decomposition of D into irreducible components and put

 $D^k = \{ \coprod D_J; J \subset \{1, \dots, r\}, *J = k, \text{ the } D_J \text{ denote the intersection of } D_j \text{ where } j \in J \}.$ For example, $D = X, D^1 = \coprod D_j$.

Following Deligne ([1], p. 32), we define the filtration of $\Omega^p(\log D)$ by $W_k^p = \Omega^k(\log D) \wedge \Omega^{p-k}$. Then we have the following exact sequence $0 \rightarrow W_{k-1}^p \rightarrow W_k^p \rightarrow \Omega_D^{p-k} \rightarrow 0.$

After making tensor product with L, we obtain the following exact sequence of cohomology groups:

 $\cdots \rightarrow H^q(X, W_{k-1}^p \otimes L) \rightarrow H^q(X, W_k^p \otimes L) \rightarrow H^q(D^k, \Omega_D^{p-k}(L \mid D)) \rightarrow \cdots$. Note that $L \mid D^k$ is ample, since L is ample. Hence in view of Kodaira vanishing theorem, we have $H^q(D^k, \Omega_D^{p-k}(L \mid D^k)) = 0$, for $p+q \ge n+1$. Hence i) follows. The second assertion ii) follows similarly. Q.E.D.

In order to apply the vanishing theorem, we will use an exact sequence in [4]. Let (X, D) be a ∂ -manifold and S an non-singular subvariety of codimention 1 of X, such that S+D has only simple normal crossings. As in [4], we have the map $r_1: \Omega_X^p(\log D) \to \Omega_S^p(\log D | S)$, and define $\Omega'^p(\log D) = \ker r_1$. Then it follows that $0 \to \Omega_X^p(\log D) \to \Omega'^p(\log D) \otimes [S] \to \Omega_S^{p-1}(\log D | S) \to 0$. Using the sequence above, we derive the following Lefschetz type theorem.

Theorem 2. The homomorphism induced by the injection $S \subset X$

$H^q(X, \Omega^p_X(\log D)) \rightarrow H^q(S, \Omega^p(\log D | S))$

is isomorphic for $p+q < \dim X-1$, and is injective for $p+q = \dim X-1$.

Corollary. If X is Kähler, $H^{q}(X^{*}, C) \rightarrow H^{q}(S^{*}, C)$ is isomorphic for $q \leq \dim X - 1$, injective for $q = \dim X - 1$, where $X^{*} = X - D$ and $S^{*} = S - D$.

§ 2. Let (X, D) be an *n*-dimensional ∂ -manifold and $T(\log D)$ the dual sheaf of $\Omega^1(\log D)$. Define $c(X, D) = c(T(\log D)) \in H^{2*}(X, \mathbb{Z})$ = $\sum H^{2i}(X, \mathbb{Z})$.

Proposition 1. $c(X, D) = c(X) \prod (1 + [D_i])^{-1}$.

A proof follows easily from the exact sequence

 $0 \rightarrow T(\log D) \rightarrow T_{\mathcal{X}} \rightarrow N_{\mathcal{D}} \rightarrow 0.$

Theorem 3. $c_n(X,D)[X] = \chi(X^*)$, which is the Euler characteristic of $X^* = X - D$.

Proof. In view of the Hodge spectral sequence

 $E_1^{pq} = H^q(X, \Omega^p(\log D)) \Rightarrow H^n(X^*, C),$

we get

 $\chi(X^*) = \sum (-1)^p \chi(X, \Omega^p(\log D))$

in which $\chi(X, E) = \sum (-1)^i \dim H^i(X, E) \notin E$ being a sheaf of holomorphic vector bundle. Recall the Hirzebruch formula of Riemann Roch theorem, $\chi(X, E) = (\sum e^{\delta_i} \prod (\gamma_j/1 - e^{-\gamma_j}))[X]$ where $c(T_X) = \prod (1 + \gamma_j)$, $c(E) = \prod (1 + \delta_i)$. Now we set $E = \Omega^i(\log D)$. Then $c(\Omega^1(\log D)) = \prod (1 + \delta_i)$. Hence $\chi(X, \Omega^p(\log D)) = (\sum \exp (\delta_{i(1)} + \cdots + \delta_{i(p)}) \prod (\gamma_j/1 - e^{-\gamma_j}))[X]$. Therefore,

$$\begin{split} \chi(X^*) &= \sum (-1)^p \chi(X, \Omega^p(\log D)) \\ &= (1 - e^{\delta_1}) \cdots (1 - e^{\delta_n}) \prod (\gamma_j / 1 - e^{-\gamma_j})[X] \\ &= (-\delta_1) \cdots (-\delta_n) \prod (\gamma_j / 1 - e^{-\gamma_j})[X] \\ &= (-1)^n c_n (\Omega^1(\log D))[X] \\ &= c_n (T(\log D))[X]. \end{split}$$
Q.E.D.

This theorem was suggested by Iitaka, and Iitaka [2] and Kawamata [3] gave different proofs from ours.

Example. $c(D_I, D_J) = (1+h)^{N+1} \prod_{j \in J} (1+a_jh)^{-1}$, where $\sum D_j$ is a divisor on P^N with simple normal crossings, $I \subset J$ are multi-indices deg $D_j = a_j$ and h = the restriction of the fundamental class of P^N .

References

- [1] P. Deligne: Théorie de Hodge. II. Publ. Math. I.H.E.S., 40, 5-58 (1971).
- [2] S. Iitaka: Geometry on complements of lines in P². Tokyo Math. J., 1 (to appear).
- [3] Y. Kawamata: On deformation of compactifiable complex manifolds (to appear).
- [4] K. Kodaira and D. C. Spencer: On a theorem of Lefschetz and the lemma of Enriques-Severi-Zariski. Proc. Nat. Acad. Sci., U. S. A., 39, 1273-1278 (1953).