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33. G.Maniolds and G.Vector Fields with Isolated Zeros

By Katsuhiro KOMIYA
Department of Mathematics, Yamaguchi University
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Let G be a finite group. A G-manifold is a smooth manifold M
together with a smooth G-action on M, and a (continuous) G-vector
field on a G-manifold M is a continuous G-equivariant cross section of
the tangent bundle r(M) of M. The object of this paper is to apply
the equivariant homotopy theory of representation spheres [4] to re-
move isolated zeros, of G-vector fields.

1. Preliminaries. Let M be a G-manifold. For any x e M, Gx
denotes the isotropy subgroup at x. For any subgroup H of G, define
MH={xeMIG=H} and MH={xeMIHcG}. Then Mn and MH are
submaniolds of M. Let s:Mr(M) be a G-vector field on M. s in-
duces a vector field sH Mnr(MH) on M by restricting s on MH.

Recall the index of a vector field s on M at an isolated zero z e M
--3M. The index is denoted by ind (z; s), nd defined to be the degree
of the map

f_ do s o- S___.S_

where o is a chart from a small neighborhood of z into R taking z to
0, and n=dimM. The map f describes the behavior of s near z.
When M is. a G-manifold and s is. a G-vector field, we may take p so as
to be a G,-equivariant chart rom a G,-invariant neighborhood of z into
an orthogonal representation V of G, taking z to 0. Moreover, the
map f is a G-equivariant map from S(V) to itself, where S(V) is the
unit sphere in V. For any subgroup H of G, z is also an isolated zero
of s, and we see ind (z; s) =deg f, where f: S(V)--,S(V) is the
restriction of f on S(V).

Convention. For the only map f: -* of an empty set, define
deg f= 1. So the index o a vector field on a 0-dim manifold at each
point is 1. For a map f :S--S, define deg f=l if f is the identity,
deg f=0 if f maps S to one point, and deg f=-1 if f interchanges
the two points of S

2. Removing zeros. Theorem 1. Let G be a finite abelian
group, and K a subgroup of G. Let s be a G-vector field on a G-man-
ifold M. Let A be a connected component of MK, and {zl, z2,..., z}
the zeros of s on A. Assume that all z’s are isolated zeros of s and
are off OM, and assume that for any subgroup H of K,
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f= ind (z; s)=0.
Then for any G-invariant neighborhood U of G(A) in M, we obtain a
G-vector field t on M which has no more zero on G(A) and agrees with
s on M--U and on 3M.

To prove the theorem we need the ollowing two lemmas.
Lemma 1. Let M be a G-manifold. (In this lemma G may be

any compact Lie group.) Let x, y e Int M be points in a connected
component A of MH for a subgroup H of G. Then there exists a G-
equivariant isotopy F" M I--M with Fo the identity and with FI(G(x))
---G(y). Moreover, F can be taken to be constant in t e I outside a
given G-invariantneighborhood in M of some compact subset in G(A).

Proof. Construct a G-equivariant isotopy f" G(x) I-.M with f0
the inclusion and with f(G(x))=G(y). By means of an equivariant
analogy of the isotopy extension theorem, extend f to the desired G-
equivariant isotopy F o M.

Lemma 2. Let G be a finite abelian group, and V an orthogonal
representation of G containing trivial action. Let S(V) and D(V) be
the unit sphere and the unit disc in V, respectively. Then a G-equiv-
ariant map f S(V)-S(V) can be G-equivariantly extended over D(V)
if and only if deg fn=O for any subgroup H of G.

This lemma ollows from the classification theorem of equivariant
homotopy classes of equivariant maps o representation spheres [4].

Proof ot Theorem 1o For some orthogonal representation V of
K with dim V dim M, let D(V) be a small disc which is. K-equivariant-
ly embedded in M and which is centered at a point in A. Assume that
D(V) is so small that

( ) g(D(V))D(V)= or any g e G--K,
(ii) D(V) is contained in U, and
(iii) s has no zero on D(V)--D(V) A.

We may use isotopies in Lemma 1 to push all zeros on G(A) into
G(Int D(V)). Precisely, there exists a G-equivariant diffeomorphism
a o M such that a(G({z, ..., z})) G(Int D(V)) and a--identity on M
--U and on M. Consider a G-vector field s=doso-. The
zeros of s on G(A) are G({a(z), ...,a(z)}) which are contained in
G(Int D(V)), and s agrees with s on M--U and on 3M. Let {x, ...,
x}={zl(z) e D(V)}. Then p=aq or some integer a0, and or any
subgroup H o K

,= ind (a(x) s)= ind (x s)
1 /a: ind (z sn)

---0.
Since s has no zero on S(V)=3D(V), s induces a K-equivariant map

f" S(V)-S(V) which describes the behavior o s on S(V). We see that
or any subgroup H o K
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deg f--,ind (a(x,) s)--0.
Then Lemma 2 implies that f extends to a K-equivariant map
f:D(V)-S(V). (We note that the assumption on the indices of the
zeros o s on A implies, dim A0, and that V contains trivial action.)
f induces a G-vector field on G(D(V)) which has no zero and agrees
with s on G(S(V)). So we obtain a G-vector field t on M which has
no zero on G(D(V)) and agrees with s outside G(Int D(V)). t is a re-
quired G-vector field on M.

3. Existence of G.vector fields with finite zeros.
Theorem 2. Let G be a finite group. Then any compact G-

manifold M has a G-vector field s such that
( ) s has only finite zeros,
(ii) at all boundary points s is not zero and points inward, and
(iii) if z is a zero of s and if K=G, then ind (z s)--ind (z;s)

for any subgroup H of K.
We may construct such a G-vector field by the same method de-

veloped in [1] and [2]. So we omit the proof.
4. Application. As an application of our result we obtain
Theorem 3. Let G be a finite abelian group of odd order. Let

W be an n-dim compact G-manifold with W=Mo(JM, where Mo and
M are disjoint and are G-invariant (n-1)-dim closed submanifolds of
3W. Then there exists a non-singular G-vector field on W which points
inward on Mo and outward on M if and only if, for any subgroup H
of G and for any connected component B of W,

z(B) z(B [ i0) z(B M),
where Z(-) denotes Euler characteristic.

Note. Theorem 3 supplies a necessary and sufficient condition
for M0 and M to be G-equivariantly Reinhart cobordant. See [3] for
(non-equivariant) Reinhart cobordism. Also see [5] for Z.-equivariant
Reinhart cobordism.

Proof of Theorem 3. To prove the necessity of the condition,
let s be a non-singular G-vector field on W, and assume s points in-
ward on M0 and outward on M. For any H and B, snlB is a non-
singular vector field on B and points inward on B [ M0 and outward
on B M. Then (B)--z(B Mo)--z(B M) follows from [3].

Next to prove the sufficiency, let P M0 [0, 1] be a G-equivariant
collar of M0 in W, and let Q---W--Mo[O, 1). By Theorem 2, there
exist G-vector fields s on P and s on Q such that

( ) s (i= 1.2) has finite zeros,
(ii) s points inward on P and s points outward on 3Q, and
(iii) if z is a zero of s and if K=G,

then ind (z; s)--ind (z; s) for any subgroup H of K. (Note’ Theorem
2 implies at once ind (z (- s)") =ind (z (--s)). However, in our
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situation where G is a finite abelian group of odd order, ind (z (--s.))
--ind (z (- s)) implies ind (z s)-- ind (z; s).) s and s. induces
a G-vector field s on W which points inward on M0 and outward on
M. Moreover, or any subgroup K ot G and for any connected com-
ponent A of W, we may show that if z(B)--z(B Mo)---z(B M) for
any B W then the zeros o s on A satisfy the assumption in Theo-
rem 1. Then we obtain a non-singular G-vector field on W which
points inward on M0 and outward on M.
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