42. On the Meromorphy of Euler Products

By Nobushige KUROKAWA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., June 15, 1978)

Introduction. We extend ordinary L-functions slightly and study their meromorphy. For simplicity we describe here the results on Euler products of Artin type which are contained in Part I of [3]. In Parts II and III of [3] we have some generalizations and modifications. Detailed proofs are described in [3].

§1. Euler products of Artin type. Let F be a finite extension of the rational number field Q, K/F a finite Galois extension with the Galois group G = Gal(K/F), R(G) the character ring of G (i.e. the ring of virtual characters of G; representations are over the complex number field C). For $g \in G$ (or for the conjugacy class of G containing g) and for $H(T) \in 1 + T \cdot R(G)[T]$ where T is an indeterminate, we denote by $H_g(T) \in 1 + T \cdot C[T]$ the polynomial obtained from H(T) by taking the values of the coefficients at g. For each prime ideal \mathfrak{p} of F unramified in K/F, let $\alpha(\mathfrak{p})$ denote the Frobenius conjugacy class $\left[\frac{K/F}{\mathfrak{P}}\right]$

in G, where \mathfrak{P} is a prime ideal of K dividing \mathfrak{p} . We define $L(s, H) = \prod_{\mathfrak{p}} H_{\alpha(\mathfrak{p})}(N(\mathfrak{p})^{-s})^{-1}$ where \mathfrak{p} runs over all prime ideals of F unramified in K/F.

We say $H(T) \in 1 + T \cdot C[T]$ is unitary if there exists a (complex) unitary matrix M such that $H(T) = \det(1 - MT)$. We say H(T) = 1 is unitary. For an Euler product over F(F/Q) being a finite extension) $L(s, H) = \prod_{n} H_n(N(\mathfrak{p})^{-s})^{-1}$ with $H = (H_n)_n$, $H_n(T) \in 1 + T \cdot C[T]$, where \mathfrak{p} runs over all prime ideals of F, we say L(s, H) is unitary if $H_{\nu}(T)$ are unitary for all \mathfrak{p} . In general if $H_{\mathfrak{p}}(T)$ is not defined for a prime ideal \mathfrak{p} of F, then we consider $H_{\nu}(T) = 1$. We remark that the unitariness of L(s, H) is not altered when we consider L(s, H) as an Euler product over Q in the natural way. More precisely if F_0 is a subfield of F, then we can consider L(s, H) as an Euler product over F_0 in the natural way as follows: for each prime ideal q of F_0 , put $H_q(T) = \prod_{\mathfrak{p} \mid \mathfrak{q}} H_{\mathfrak{p}}(T^{f(\mathfrak{p} \mid \mathfrak{q})})$ where \mathfrak{p} runs over all prime ideals of F dividing \mathfrak{q} and $f(\mathfrak{p}|\mathfrak{q})$ is the relative degree of \mathfrak{p} over \mathfrak{q} , then $L(s, H) = L(s, H_0)$ with $H_0 = (H_0)_{\mathfrak{q}}$. Under this process the unitariness is not altered. It may be remarked that the unitariness is an analogue of the (normalized) "Riemann-Ramanujan-Weil conjecture" or "temperedness" for some arithmetic objects.

Following Theorem 1 is a main result for Euler products of Artin type.

Theorem 1. Let F/Q, K/F, G, $H(T) \in 1 + T \cdot R(G)[T]$, L(s, H) be as above. Then:

(1) L(s, H) is unitary $\Leftrightarrow L(s, H)$ is meromorphic on C.

(2) L(s, H) is not unitary $\Leftrightarrow L(s, H)$ is meromorphic in Re(s) > 0with the natural boundary Re(s)=0; each point on Re(s)=0 is a limitpoint of poles of L(s, H) in Re(s)>0.

Remark 1. The case F = K = Q is treated in Estermann [2].

Example 1. Let F/Q, K/F, G=Gal(K/F), R(G) be as above. Let $\rho: G \rightarrow GL(n, C)$ be a homomorphism $(n \ge 1$ being an integer), and put $P_{\rho}(T) = \det(1-\rho T) = \sum_{i=0}^{n} (-1)^{i} \operatorname{tr}(\wedge^{i}\rho)T^{i} \in 1+T \cdot R(G)[T]$ where T is an indeterminate and $\wedge^{i}\rho$ is the (equivalence class of) *i*-th exterior power of ρ . Then $L(s, P_{\rho})$ is unitary, and it follows from Theorem 1 that $L(s, P_{\rho})$ is meromorphic on C. In fact $L(s, P_{\rho}) = L(s, \rho)$ is the Artin *L*-function (except for a finite number of Euler factors), and the meromorphy of $L(s, \rho)$ is due to R. Brauer. We use this fact in our proof of Theorem 1.

Example 2. Let the notations be as in Example 1. Let m be a non-zero integer. For each finite place v of F, let $t(v) = -\log(m)/(m)$ $\log(N(v))$ where N(v) is the "norm" of v (i.e. the number of elements of the residue field at v) and $\log(m)$ is the principal value (but what we need is $N(v)^{-t(v)} = m$). Let t(v) = 0 for each infinite place v of F. We denote by A_F the adele ring of F. For each idele $a = (a_v)_v \in GL(1,$ A_F), let $\omega_m(a) = \prod_v |a_v|_v^{t(v)}$ where $|v|_v$ is the normalized valuation at v and v runs over all places of F. Then $\omega_m: GL(1, A_F) \rightarrow GL(1, C)$ is a continuous homomorphism and an admissible representation of $GL(1, A_F)$ in the usual sense. The corresponding *L*-function (the finite part) is $L(s, \omega_m) = \prod_{p} (1 - m \cdot N(p)^{-s})^{-1}$ where p runs over all prime ideals of F. We define $L(s, \rho, \omega_m) = L(s, P_{\rho}^{(m)})$ where $P_{\rho}^{(m)}(T) = P_{\rho}(m \cdot T) \in 1 + T \cdot$ R(G)[T]. It follows from Theorem 1 that: (1) If |m|=1, then $L(s, \rho, r)$ ω_m) is meromorphic on C. (2) If |m| > 1, then $L(s, \rho, \omega_m)$ is meromorphic in $\operatorname{Re}(s) > 0$ with the natural boundary $\operatorname{Re}(s) = 0$. In general if we assume the existence of admissible (and automorphic) representation $\pi(\rho)$ of $GL(n, A_F)$ attached to ρ in the usual sense, then essentially $L(s, \rho, \omega_m) = L(s, \pi(\rho) \otimes \omega_m)$. In particular if n=1, then $\pi(\rho)$ exists by Artin's reciprocity law and $\pi(\rho) \otimes \omega_m$ is an admissible (and not automorphic for $m \neq 1$) representation of $GL(1, A_F)$. More generally it follows from a generalization of Theorem 1 that if $\rho: W(K/F) \rightarrow GL(1,$ C) is a (continuous) one-dimensional unitary representation of the Weil group W(K/F), then the above (1) and (2) hold for $L(s, \pi(\rho) \otimes \omega_m)$. This example is considered to be an example of the analytic behaviour of Euler products attached to admissible (not necessarily automorphic)

representations.

§2. Scalar products. Let F/Q, K/F, G = Gal(K/F) be as in §1. Let $\rho_i: G \to GL(n_i, C)$ be a homomorphism, $i=1, \dots, r, r \ge 1$. Let $L(s, \rho_i) = \sum_{\alpha} c_i(\alpha)N(\alpha)^{-s}$ be the Artin L-function expanded over integral ideals α of F. We call $L(s, \rho_1, \dots, \rho_r) = \sum_{\alpha} c_1(\alpha) \cdots c_r(\alpha)N(\alpha)^{-s}$ the scalar product of $L(s, \rho_i), i=1, \dots, r$.

For $n = (n_1, \dots, n_r)$ with $1 \le n_1 \le \dots \le n_r$ integers, $r \ge 1$, we make the following definition: *n* is of type I if $n = (1, \dots, 1, *)$ or $(1, \dots, 1, 2, 2)$ (n = (*), (1, *), (2, 2) for $r \le 2$), and *n* is of type II if *n* is otherwise. Then we obtain following Theorem 2 from Theorem 1.

Theorem 2. Let F/Q, K/F, G, ρ_i , $i=1, \dots, r$, $L(s, \rho_1, \dots, \rho_r)$ be as above. Assume that $1 \leq n_1 \leq \dots \leq n_r$, and set $\mathbf{n} = (n_1, \dots, n_r)$. Then:

(1) **n** is of type $I \Leftrightarrow L(s, \rho_1, \dots, \rho_r)$ is meromorphic on **C**.

(2) **n** is of type $\Pi \rightleftharpoons L(s, \rho_1, \dots, \rho_r)$ is meromorphic in $\operatorname{Re}(s) > 0$ with the natural boundary $\operatorname{Re}(s) = 0$.

Remark 2. This result has an application to Linnik's problem, cf. [4].

§3. An application. We have an application of Theorem 1 to Dirichlet series attached to elliptic modular forms of weights one. We follow the notations of Deligne-Serre [1]. Let $f(z) = \sum_{n=0}^{\infty} a(n)q^n \ (q = \exp(2\pi\sqrt{-1}\cdot z))$ be a holomorphic modular form on $\Gamma_0(N)$ $(N \ge 1$ an integer) of type $(1, \varepsilon), \varepsilon$ being an odd character mod N. We assume that f(z) is an eigen-function of Hecke operator T(p) for each prime $p \nmid N$ and f(z) is normalized (a(1)=1). For simplicity we say f(z) is a holomorphic normalized eigen modular form. We have the following results from Theorem 1 (cf. Theorem 2) by applying the main result in Deligne-Serre [1].

Theorem 3. Let $f_i(z) = \sum_{n=0}^{\infty} a_i(n)q^n$ be a holomorphic normalized eigen modular form on $\Gamma_0(N_i)$ of type $(1, \varepsilon_i), i=1, \dots, r, r \ge 1$. Let $L(s, f_1, \dots, f_r) = \sum_{n=1}^{\infty} a_i(n) \dots a_r(n)n^{-s}$. Then:

(1) $r=1 \text{ or } 2 \Leftrightarrow L(s, f_1, \dots, f_r) \text{ is meromorphic on } C.$

(2) $r \ge 3 \Leftrightarrow L(s, f_1, \dots, f_r)$ is meromorphic in $\operatorname{Re}(s) > 0$ with the natural boundary $\operatorname{Re}(s) = 0$.

Theorem 3-a. Let $f(z) = \sum_{n=0}^{\infty} a(n)q^n$ be a holomorphic normalized eigen modular form on $\Gamma_0(N)$ of type $(1, \varepsilon)$. Let $m \ge 1$ be an integer. Then:

(1) $m=1 \text{ or } 2 \Leftrightarrow \sum_{n=1}^{\infty} a(n)^m n^{-s} \text{ and } \sum_{n=1}^{\infty} a(n^m) n^{-s} \text{ are meromorphic}$ on C.

(2) $m \ge 3 \Leftrightarrow \sum_{n=1}^{\infty} a(n)^m n^{-s}$ and $\sum_{n=1}^{\infty} a(n^m) n^{-s}$ are meromorphic in Re (s)>0 with their natural boundaries Re (s)=0.

Remark 3. Similar results hold for holomorphic elliptic eigen cusp forms of weights ≥ 2 assuming a modification of Sato-Tate conjecture.

No. 6]

N. KUROKAWA

Remark 4. From a modification of Theorem 1, we have an application to the meromorphy of Dirichlet series constructed from the eigen-values of Hecke operators on Siegel modular forms of degree 3.

References

- P. Deligne and J.-P. Serre: Formes modulaires de poides 1. Ann. sci. E. N. S. 4° ser., 7, 507-530 (1974).
- [2] T. Estermann: On certain functions represented by Dirichlet series. Proc. London Math. Soc., 27, 435-448 (1928).
- [3] N. Kurokawa: On the meromorphy of Euler products. I, II, III (preprints).
- [4] ——: On Linnik's problem. Proc. Japan Acad., 54A, 167-169 (1978).