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(Communicated by Kunihiko KODAIRA, M. ft. A., June 15, 1978)

Introduction. We extend ordinary L-functions slightly and study
their meromorphy. For simplicity we describe here the results on
Euler products of Artin type which are contained in Part I of [3]. In
Parts II and III of [3] we have some generalizations and modifications.
Detailed proofs are described in [3].

1. Euler products of Artin type. Let F be a finite extension
of the rational number field Q, K/F a finite Galois extension with the
Galois group G=Gal (K/F), R(G) the character ring of G (i.e. the ring

of virtual characters of G representations are over the complex num-
ber field C). For g e G (or for the conjugacy class of G containing g)
and for H(T) e 1 + T. R(G)[T] where T is an indeterminate, we denote
by H(T) e 1 + T. C[T] the polynomial obtained from H(T) by taking

the values of the coefficients at g. For each prime ideal p of F un-

ramified in K/F, let (p)denote the Frobenius conjugacy class [K/F]
in G, where 3 is a prime ideal of K dividing p. We define L(s,H)

l-I, H(,)(N(P)-)- where p runs over all prime ideals of F unramified
in K/F.

We say H(T)e 1 + T.C[T] is unitary if there exists a (complex)
unitary matrix M such that H(T)--det (1--MT). We say H(T)--I is
unitary. For an Euler product over F (F/Q being a finite extension)
L(s,H)-- ]-I,H,(N(o)-8) -1 with H=(H), H,(T) e I+T.C[T], where p
runs over all prime ideals of F, we say L(s, H) is unitary if H,(T) are
unitary for all p. In general if H,(T) is not defined for a prime ideal p
of F, then we consider H,(T)--1. We remark that the unitariness of
L(s, H) is not altered when we consider L(s, H) as an Euler product
over Q in the natural way. More precisely if F0 is a subfield of F,
then we can consider L(s, H) as an Euler product over F0 in the natural
way as follows" for each prime ideal q of F0, put H,(T)---- I-[,H(T(,))
where p runs over all prime ideals of F dividing q and f(Plq)is the
relative degree of p over q, then L(s, H)--L(s, Ho) with Ho--(H,),. Un-
der this process the unitariness is not altered. It may be remarked
that the unitariness is an analogue of the (normalized) "Riemann-
Ramanujan-Weil conjecture" or "temperedness" for some arithmetic
objects.



164 N. KUROKAWA [Vol. 54 (A),

Following Theorem I is a main result for Euler products of Artin
type.

Theorem 1o LetF/Q,K/F, G,H(T) 1+ T.R(G)[T],L(s,H) beas
above. Then"

(1) L(s, H) is unitary@L(s, H) is meromorphic on C.
(2) L(s,H) is not unitary(==L(s,H) is meromorphic in Re (s)0

with the natural boundary Re (s)=0 each point on Re (s)-0 is a limit-
point of poles of L(s, H) in Re (s)0.

Remark 1. The case F-K--Q is treated in Estermann [2].
txample 1. Let F/Q, K/F, G=Gal (K/F), R(G) be as above. Let

p’G-.GL(n, C) be a homomorphism (n_>_ 1 being an integer), and put
P(T)-det (1--pT)==o (--1) tr (Ap)T e 1 + T.R(G)[T] where T is
an indeterminate and /p is the (equivalence class of) i-th exterior
power of p. Then L(s, P,) is unitary, and it follows from Theorem 1
that L(s,P,) is meromorphic on C. In fact L(s,P,)--L(s,p) is the
Artin L-function (except for a finite number of Euler factors), and the
meromorphy of L(s, p) is due to R. Brauer. We use this fact in our
proof of Theorem 1.

lxample 2. Let the notations be as in Example 1. Let m be a
non-zero integer. For each finite place v of F, let t(v)=--log (m)/
log (N(v)) where N(v) is the "norm" of v (i.e. the number of elements
of the residue field at v) and log (m) is the principal value (but what
we need is N(v)-t(v)--m). Let t(v)=0 for each infinite place v of F.
We denote by A the adele ring of F. For each idele a=(a) e GL(1,
A), let w(a)= [I laol() where I is the normalized valuation at v and
v runs over all places of F. Then w "GL(1, A)-.GL(1, C)is a con-
tinuous homomorphism and an admissible representation of GL(1, A)
in the usual sense. The corresponding L-function (the finite part) is
L(s,(o)-- ]-[ (1--m.N(p)-0- where p runs over all prime ideals of F.
We define L(s, p, o,) L(s, P(,)) where P()(T) P,(m. T) e 1 + T.
R(G)[T]. It follows from Theorem 1 that’(l) If Iml=l, then L(s, p,
o) is meromorphic on C. (2) If Iml 1, then L(s, p, (o) is meromor-
phic in Re (s)0 with the natural boundary Re (s)--0. In general if
we assume the existence of admissible (and automorphic) representa-
tion (p) of GL(n, A) attached to p in the usual sense, then essentially
L(s, p,(o)=L(s, (p)(R)w). In particular if n=l, then u(p) exists b,y
Artin’s reciprocity law and (p)(R)w is an admissible (and not auto-
morphic for m4:l) representation of GL(1, A). More generally it
follows from a generalization of Theorem 1 that if p" W(K/F)-.GL(1,
C) is a (continuous) one-dimensional unitary representation of the Weil
group W(K/F), then the above (1) and (2) hold for L(s, u(p)(R)o). This
example is considered to be an example of the analytic behaviour of
Euler products attached to admissible (not necessarily automorphic)
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representations.
2. Scalar products. Let F/Q, K/F, G-- Gal (K/F) be as in 1.

Let p" GGL(n,C) be a homomorphism, i-l, .,r, r>=l. Let
L(s, p)--, c(a)N(a)- be the Artin L-function expanded over integral
ideals of F. We call L(s, p, ..., p)--, c().., c()N() the scalar
product of L(s, p), i-- 1, ., r.

For n-(n,...,n) with ln__<...__<n integers, r__>l, we make
the following definition" n is of type I if n-(1, ., 1, .) or (1, 1, 2, 2)
(n=(.), (1,.), (2,2) for r=<2), and n is ot t.ype II if n is otherwise.
Then we obtain following Theorem 2 grom Theorem 1.

Theorem 2: Let F/Q, K/F, G, pc, i-.1, r, L(s, pl, pr) be
as above. Assume that l <=n <= <=nr, and set n-(n, ..., n). Then"

(1) n is of type I{==L(s, p, .., p) is meromorphic on C.
(2) n is of type II@L(s, pl," ", p) is meromorphic in Re (s)>0

with the natural boundary Re (s)--0.
Remark 2. This result has an application to Linnik’s problem,

c. [4].
:. An application. We have an application of Theorem 1

to Dirichlet series attached to elliptic modular forms of weights
one. We follow the notations of Deligne-Serre [1]. Let f(z)
=--0 a(n)q (q=exp (2/- 1.z)) be a holomorphic modular orm on
Fo(N) (N__> 1 an integer) of type (1, e), being an odd character mod N.
We assume that f(z) is an eigen-function of Hecke operator T(p) for
each prime pSN and f(z) is normalized (a(1)-l). For simplicity we
say f(z) is a holomorphic normalized eigen modular form. We have
the following results from Theorem 1 (cf. Theorem 2) by appl.ying the
main result in Deligne-Serre [1].

Theorem 3. Let f(z)= ,n%O a(n)q be a holomorphic normalized
eigen modular form on Fo(N) of type (1, e), i=1,...,r, r>=l. Let
L(s,fl, ..., fr)--=1 a(n) ar(n)n-. Then"

(1) r=l or 2@L(s,f, f) is meromorphic on C.
(2) r>=3@L(s,f, .,f) is meromorphic in Re (s) 0 with the

natural boundary Re (s)-0.
Theorem :-a. Let f(z) =o a(n)q be a holomorphic normaliz-

ed eigen modular form on Fo(N) of type (1, e). Let m >=l be an
integer. Then"

(1) m--1 or 2{=,= a(n)n- and ,= a(n)n are meromorphic
on C.

(2) m>=3@= a(n)n- and =a(n)n are meromorphic in
Re (s)0 with their natural boundaries Re (s)-0.

Remark :. Similar results hold for holomorphic elliptic eigen
cusp forms of weights _>_2 assuming a modification of Sato-Tate con-
jecture.
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Remark 4. From a modification of Theorem 1, we have an ap-
plication to the meromorphy of Dirichlet series constructed from the
eigen-values of Hecke operators on Siegel modular forms of degree 3.
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