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1o The logarithmic Kodaira dimension introduced by S. Iitaka [1]
plays an important role in the study of non-compact algebraic varieties.
In this note we calculate the logarithmic Kodaira dimension (P--C)
of the complement of an irreducible curve C in the complex projective
space P of dimension 2. We denote by g(C) the genus oi the non-
singular model of C. In this note, a locally irreducible singular point
of C will be called cusp. Our results are as followse

Theorem. Let C be an irreducible curve of degree n in
( I If g(C) >/1 and n> 4, then (p2_C)-2.
( II ) If g(C)=0 and C has at least three cusps, then (P2--C)--2.
(III) If g(C)-O, C has at least two singular points, and one of the

singular points is locally reducible, then (P-C)--2.
(IV) If g(C)=0 and C has two cusps, then (P--C)
For the definition of logarithmic Kodaira dimension, see S. Iitaka

[i].
Remark 1. It is with ease to show that (P--C)-O for any non-

singular elliptic curve C of degree 3 in P.
Remark 2. F. Sakai [5] and S. Iitaka [3], independently oi us,

showed the same result as Case (I).
2. Monoidal transformations. Let

=St : >-S_ >... >S ’
be a finite sequence of monoidal transformations with successive
centers Pl,’",Pt. We pose z-zo...ozt"/32p. Let E be the ex-
ceptional curve of the monoidal transformation z. Let us denote by
E the proper transform of E by z+lo’"ozt. By definition, E
is a divisor in S, but we shall use for the sake of simplicity the same
letter E for (z/l zrt)*E also. Let H be an arbitrary line in p2.

We shall use the same letter H for z*H also.
We frequently use the following lemma to calculate
Lemma. Let " p2__p2, H and E be as above. Then we have for

any N e N, n e NU {0} the following"

dim H(’2, O(NH--= nE))>(N/ 1)(N+ 2)--_ n(n+ 1).
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Proof. It is sufficient to show the lemma for the case where the
infinite line does not contain any p, and where H is the infinite line.
A polynomial of degree N, h=,a/< aaxay, has multiplicity at least

n at p =(xx, y) if and only if its coefficients a satisfy n(n + 1)/2 linear
equations"

+ .h(Xl, y)-O, for ,0, +fln-l.Ox"Oy
Suppose that P2 lies in E. Let x-x=x’, y-y=x’y’ be the monoidal
transformation at p,, and let us pose h(x, y)- h(x, + x’, y + x’y’)
=x’=’h(x’, y’). Then each coefficient a of h2 is a linear form of {a}.
Consequently h2(x’, y’) has multiplicity at least n2 at p if and only if
the coefficients a, satisfy n(n+.l)/2 linear equations. We continue
this process and we have =n(n+l)/2 linear equations of a. A
polynomial h whose coefficients a satisfy all these linear equations is
exactly an element of H(P, G(NH--=, nE)). Then the proof of
the lemma follows quickly.

3. Proof of Theorem. Let C be an irreducible curve of degree

n>4 in W. We perform a succession of monoidal transformations
as in the preceding paragraph, and we use the same notations..
We suppose that the (reduced) inverse image D==-’(C) is a divisor
with normal crossings. Let m be the multiplicity at p of the proper
transform of C by u_, . Let C’ be the proper transform of C
b,y . We denote by K the canonical bundle of 2. Then we have

D-C’+ E,
i=l

--3H+ E, (linearly equivalent)
i=l

nH--C C’+ , mE,
i=l

and this implies

D+K(n--g)H+, E--, (m--l)E.
i=l i=l

(1)

The assertions (I), (II), and (III) of the theorem will be derived
from the following proposition"

Proposition 1. Let C,n, D,K, and H be as above. Suppose we
have the following relation for sulciently large k e N"

k(D+F)(n--3)H+ ( 2 )
where a is a suitable positive number independent of k and D is a
suitable non-negative divisor in P dependent on k. Then (W--C)-2.

Proof. Take an integer k such that (2) holds. Then or any
m e N we have

dim H(P2, O(mak(D+K)))> dim H(b2, (C)(mo(n- 3)H)).
It is obvious that there exists a positive constant c independent of m
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such that dim H(l, G(ma(n-3)H))> cm. By definition of the logari-
thmic Kodaira dimension, Proposition 1 follows immediately.

The relation (1) contains a negative divisor --__ (m,-1)E,. This
is inconvenient to calculate dim H(/, 0(k(D/))). So we eliminate
this negative part, as will be described in the following, by rewriting
(n--3)H through the usage of the above lemma so that we can obtain
the equation (2) and derive the theorem from Proposition 1.

Case (I). Suppose that g(C)l and n>4. ’We apply the lemma
to the case where N=n--3 and n,=m,-I (i--1, ..., t). Then the clas-
sical ormula ([4], p. 393)

g(C)--(n--1)(n-2)--, m(m--l) (3)

and the assumption g(C)> 1 show that

H(’2, 0((n-3)H--= (m--I)E))O.
This asserts that (n--3)H= (m,--I)E,.+C, where C is a positive
divisor in P. By this relation and (1), we have

k(D+K)N(n-3)H+(k-1)(n-3)H+ k E--k (m-- 1)E
i=l i=l

N(n--3)H+ (k-1)C1 + k . E--, (m,-- 1)E,.
i=l i=l

As E, is a linear combination of E. (]= 1, ..., t), we obtain from this
equation the desired relation (2) for sufficiently large k and for a= 1.
So the assertion of (I) of the theorem follows from Proposition 1.

Case (II). Suppose, for the moment, that C is a curve of genus 0
with only one singular point p and that it is a cusp. Let us denote b7
s the index such that the proper transform of the curve is singular at
p and non-singular at p/ in the process of monoidal transformations.
Let us further suppose that the number t of our monoidal transfor-
mations is the smallest one to obtain D with normal crossings. Then,
by observing the diagram of monoidal transformations, we have

E---E+ Es+I +... + Et, Et_I--Ett_I +E, ( 4 )
t--s=ms. (5)

We apply the lemma to the following set"

H(/2, O((n--3)H-- (m--I)E--(m--2)E--E+
B,y (3) and (5) we have

1 -(m-- 1)(m,--2)-- 1 1=1,(n-- 1)(n--2)--- Y: m(m-- 1)-- 1

so the lemma shows that this set is not empt:g, and we have
(n-3)H- (m-1)E

t, (6)
+ (m,--2)E +E,+ +. +Et_ + C

where C. is .a positive divisor.
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Then we obtain the following relation from (1) and (6)"

k(D /K) (n-- 3)H+ (k-- 1)(n-- 3)H+ k E-- k , (m-1)E
i=l i=l

(n--3)H/(k--1)C--, (m--l)E+k , E
i=l i=l

+ (k--)(--E+E/ +... +E_).
So we have rom (4)

k(D+K)(n-3)H+(k--1)C-, (m-l)E+k E
=1 = (7)
--(k-- 1)(E + E’t_ + 2E’t).

Now let us suppose that C has at least three cusps p, p, and p.
As above, let us denote b,y s (]= 1, 2, 3) the index such that the proper
transform of the curve is singular at p and non-singular at p,/ in
the process of desingularization of the singular point p. We pose

t-=s+m. Then we obtain three equations analogous to (7) cor-
responding to 2" 1, 2, 3"

k(D+K)(n--3)H+(k-1)C,--, (m--l)E+k E= = (7)’
--(]-- 1)(E’s - E’t_ - 2E’t)

where t is the number of all monoidal transformations. By adding
these three equations, we have

3k(D+) 3(n-3)H+ (k-- 1) C, 3 , (m 1)E + 3k E
j=l i=l i=l

-(-) F, (E+E’tj-1 "3
I- 2Eta).

j=l

As the indices s, s, s, t 1, ., t are all different, we obtain from
this the desired relation (2) for large k and for a-3.

Case (III). We use the ollowing proposition in this case"

Proposition 2 (S. Iitaka [2] (Appendix)). Let S be a non-singular
compact projective surface such that H(S, )=0. Let D=,= C be
a divisor in S with normal crossings, and with its irreducible com-
ponents C. We denote by K the canonical bundle of S. Then we have

dim H(S, ((D + K)) rank H(D, Z) g(C) + dim H(S, ().
i=l

The proof of (III) will be divided in two cases (i) and (ii).
(i) Suppose C has at least a cusp p and a locally reducible

singular point p, and is of genus O. Let us denote b.y I (]= 1, 2) the
set of all indices i such that the point p appears in the process of desin-
gularization of the singular point p. We .appl:g the above proposi-
tion to our surface 1 and the divisor D=C’+,e E. This is pos-
sible because H(I, (p)=0. As p is a locall.y reducible singular
point, we see easily that rank H(D,Z)O, and this implies that
H(/,(C)(D+))0. So we have D+C where C is a non-
negative divisor, and this is equivalent to
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(n--3)H , E+, (m-- 1)E + C. ( 8 )
iI i=1

We have from (1) and (8)
k(D+ K) (n-- 3)H+ (k- 1)C3

(9)- (mi-1)Et+k E-(k--1) , E.
i=l i=l iI2

The equation (7)’ for ]-1 and (9) impl,y

3k(D+ K) 3(n-- 3)H+ (k-- 1)C2,1 + 2(k-- 1)C3

--3 , (mi-- 1)E + 3k , E--(k-- 1)(E, + E’t,_ +
i=l i=l

--2(k-- 1) o..2 E.
As the indices s, t--i and t are not contained in L, we obtain from
this the desired relation (2) for large k.

(ii) Suppose C has at least two locally reducible singular points
p and p, and is of genus O. Then we obtain, for p also, an equation
analogous to (9), and by adding this and (9) we have

2k(D +K) 2(n-- 3)H+ (k-- 1)C+ (k-- 1)Ct

--2 , (m-- 1)E + 2k , E--(k-- 1) E E--(k-- 1) ] E
i=l i=l iI1 iI

where C is a non-negative divisor. Consequentl,y we obtain (2) 2or
large k.

Case (IV). Suppose that C has two cusps Pl and p2, and is of
genus O. Then we have two equations analogous to (6) corresponding
to ]:1,2"

(n-3)H (m--l)E+(msj--2)Esj+E/l+ +Etj_+C,.
From these two equations and (1), we have

2(D+K)2 , E+ , C,+ , (--E+Es/ +... +Et_),
i=l y=l j=l

and further, rom two equations analogous to (4), we have

2(D+K) 2 E+ C, (E,+ Et,_ + 2Et).
i=1 j=l y=l

The right hand side of this equation is a positive divisor, so
H(P, O(2(D+ ))) 0.

Consequently we have, by definition, (fi-C)>0.
Remark. Let us suppose that we have, in the process o monoidal

transformations, the same condition for the singularities of C as in
Cases. (II), (III), or (IV). Our demonstration is valid in this case
also, and we have the same conclusion.
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