40. The Intersection of Topologies

By Ken-ichi TAMANO

Tomioka High School, Kanagawa Prefecture

(Communicated by Kôsaku Yosida, M. J. A., June 15, 1978)

Let X be a set, \mathfrak{T} a topology on X, and $A \subset X$. We denote by $\overline{A}_{\mathfrak{x}}$ the closure of A in the space (X, \mathfrak{T}) . Given two topologies $\mathfrak{T}_1, \mathfrak{T}_2$ on X, we say that $\mathfrak{T}_1, \mathfrak{T}_2$ are *compatible* if, for every $A \subset X, \overline{A}_{\mathfrak{X}_1 \cap \mathfrak{X}_2} = \overline{A}_{\mathfrak{X}_1}$ $\cup \overline{A}_{\mathfrak{X}_2}$.

It is known by A. V. Arhangel'skiĭ [1, Theorem 2] that the intersection of two compatible topologies with uniform base (or pointcountable base) is again a topology with uniform base (or point-countable base). A. V. Arhangel'skiĭ [1] raised the following questions:

(1) Is the intersection of two (Hausdorff, regular, completely regular) compatible topologies with development again a topology with development?

(2) Is the intersection of two (Hausdorff, regular, completely regular) compatible topologies with σ -disjoint base again a topology with σ -disjoint base?

In this paper, we shall give negative answers for these questions by showing counterexamples.

 ${\cal R}$ denotes the set of real numbers, and ${\cal N}$ denotes the set of natural numbers.

Let

$$X = \{(x, y) \in R \times R : y \ge 0\},\$$

$$X_0 = \{(x, y) \in R \times R : y \ge 0\}.$$

The underlying set of each example is always the half upper plane X, and the points of $X - X_0$ are always isolated. So we shall only give a neighborhood base at each point of X_0 .

1. Two developable compatible topologies whose intersection is not developable. (X, \mathfrak{T}_1) : For each $x_0 \in R$, and $n \in N$, let $U_n(x_0) = \{(x_0, 0)\} \cup \{(x, y) \in X : x_0 - \frac{1}{n} < x < x_0 + \frac{1}{n}, 0 < y \leq |x - x_0|\}$, and $\{U_n(x_0)\}_{n \in N}$ be a neighborhood base at $p = (x_0, 0) \in X_0$. Then the constructed space (X, \mathfrak{T}_1) is a developable T_2 -space.

 $(X,\mathfrak{T}_2):$ Let $V_n(x_0) = \left\{ (x,y) \in X : x_0 - \frac{1}{n} < x < x_0 + \frac{1}{n}, y = 0 \right\}$, and

 $\{V_n(x_0)\}_{n \in N}$ be a neighborhood base at $p = (x_0, 0) \in X_0$. Then (X, \mathfrak{T}_2) is a metrizable space.

 $(X, \mathfrak{T}_1 \cap \mathfrak{T}_2)$: Because $U_n(x_0) \cup V_n(x_0)$ is a neighborhood at $p = (x_0, 0)$

K. TAMANO

in the topology $\mathfrak{X}_1 \cap \mathfrak{X}_2$, \mathfrak{X}_1 and \mathfrak{X}_2 are compatible. The space $(X, \mathfrak{X}_1 \cap \mathfrak{X}_2)$ is a M_1 -space, but is not metrizable because it contains a separable subspace which is not second countable, as described in E. van Douwen [2]. So $(X, \mathfrak{X}_1 \cap \mathfrak{X}_2)$ is not developable.

Remark. It is not known whether we can construct regular or completely regular counterexamples for this question or not.

2. Two compatible topologies with σ -disjoint base whose intersection is not a topology with σ -disjoint base. (X, \mathfrak{T}_3) : Let $U_n(x_0) = \left\{ (x, y) \in X : y < \frac{1}{n}, y = x - x_0 \right\}$, and $\{U_n(x_0)\}_{n \in N}$ be a neighborhood base at $p = (x_0, 0) \in X_0$. Then (X, \mathfrak{T}_3) is a metrizable space.

 $(X,\mathfrak{T}_4): ext{ Let } V_n(x_0) = \Big\{(x,y) \in X : y < rac{1}{n}, \ y = -x + x_0\Big\}, ext{ and }$

 $\{V_n(x_0)\}_{n \in N}$ be a neighborhood base at $p = (x_0, 0) \in X_0$. Then (X, \mathfrak{T}_4) is a metrizable space.

 $(X, \mathfrak{T}_3 \cap \mathfrak{T}_4)$: Topologies \mathfrak{T}_3 and \mathfrak{T}_4 are compatible, and the space $(X, \mathfrak{T}_3 \cap \mathfrak{T}_4)$ is a completely regular metacompact developable space which is not screenable as described in R. Heath [3, Example 1]. We can see that $(X, \mathfrak{T}_3 \cap \mathfrak{T}_4)$ has not a σ -disjoint base.

References

- A. V. Arhangel'skii: The intersection of topologies and pseudo-open compact mappings. Dokl. Akad. Nauk SSSR, 226(4) (1976) (in Russian); Soviet Math. Dokl., 17(1), 160-163 (1976) (English translation).
- [2] Eric K. van Douwen: Nonstratifiable regular quotients of separable stratifiable spaces. Proc. Amer. Math. Soc., **52**, 457-460 (1975).
- [3] R. W. Heath: Screenability, pointwise paracompactness, and metrization of Moore spaces. Canad. J. Math., 16, 763-770 (1964).

156