38. On L^{2}-Boundedness and L^{2}-Compactness of Pseudo-Differential Operators

By Susumu Aoki
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., June 15, 1978)

1. Introduction. After the works of Calderón-Vaillancourt [1], [2], Cordes [3] developed a new method by which, among others, the L^{2}-boundedness can be proved easily. In particular, he showed that if a symbol $a(x, \xi)$ defined on $R^{n} \times R^{n}$ has bounded derivatives $D_{x}^{a} D_{\xi}^{\beta} a$ for $|\alpha|,|\beta| \leqq[n / 2]+1$, then the pseudo-differential operator $A=a(X, D)$ is L^{2}-bounded. Subsequently Kato [4] formulated the basic idea of Cordes in a slightly different form and showed that the same method can be used to prove that A is L^{2}-bounded if $(1+|\xi|)^{(|\beta|-|\alpha|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} \alpha$ is bounded for $|\alpha| \leqq[n / 2]+2,|\beta| \leqq[n / 2]+1$, where ρ is a constant such that $0<\rho<1$. These two results [3], [4] improve the order of the differentiability required in [1], [2] for simple symbols $a(x, \xi)$.

Applying the Sobolev lemma, a symbol satisfying one of the sufficient conditions above is necessarily continuous. In this paper, we obtain some classes of bounded pseudo-differential operators whose symbols are not necessarily continuous (see Theorems 2 and 3). The key point is the fact that if the derivatives of a symbol up to some order can be estimated by the L^{p}-norm $(1 \leqq p \leqq \infty)$, then the associated pseudo-differential operator is L^{2}-bounded (see Lemma 1). As corollaries, we obtain also the sufficient conditions for L^{2}-compactness.
2. Definitions and notations. Given any tempered distribution a on $R^{n} \times R^{n}$, the pseudo-differential operator $A=a(X, D)$ is defined by

$$
\begin{gather*}
\mathcal{S}^{\prime}\left(R^{n}\right) \\
\langle\mathrm{A} u, v\rangle_{S_{\left(R^{n}\right)}}=S_{S^{\prime}\left(R^{n} \times R^{n}\right)}\langle a, w\rangle_{\mathcal{S}^{\prime}\left(R^{n} \times R^{n}\right)}, \tag{2.1}\\
w(x, \xi)=(2 \pi)^{-n / 2} e^{i \xi x} \hat{u}(\xi) v(x),
\end{gather*}
$$

where $u, v \in \mathcal{S}\left(R^{n}\right)$ (the Schwartz space). As usual, (2.1) may be written symbolically as

$$
\begin{equation*}
A u(x)=a(X, D) u(x)=(2 \pi)^{-n / 2} \int d \xi e^{i \xi x} a(x, \xi) \hat{u}(\xi) \tag{2.2}
\end{equation*}
$$

If in particular $a(x, \xi)=x_{j}$, we have $A=X_{j}$, the operator of multiplication by x_{j}. If $a(x, \xi)=\xi_{j}$, we have $A=D_{j}=-i \partial / \partial x_{j}$.

We denote by $F[1, \infty$] the set of all strictly increasing finite sequences of numbers in the interval $[1, \infty] ;\left\{p_{j}\right\} \in F[1, \infty]$ means that there exist an integer $\ell \geqq 1$ and $\left\{p_{j}\right\}=\left\{p_{1}, \cdots, p_{\ell}\right\}, 1 \leqq p_{1}<\cdots<p_{\ell} \leqq \infty$. Given any $\left\{p_{j}\right\} \in F[1, \infty]$, we define the subspace $L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)$ of $\mathcal{S}^{\prime}\left(R^{n} \times R^{n}\right)$ as $L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)=\sum_{p_{\in\left\{p_{j}\right\}}} L^{p}\left(R^{n} \times R^{n}\right)$. We define also

With the norm $\|\cdot\|_{L^{\left\{p_{j}\right\}}}$, the space $L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)$ forms a Banach space.
We denote by $B\left(L^{2}\left(R^{n}\right)\right)$ the set of all bounded linear operators on $L^{2}\left(R^{n}\right)$ with the operator norm $\|\cdot\|$. By $C\left(L^{2}\left(R^{n}\right)\right)$, we denote the set of all compact operators on $L^{2}\left(R^{n}\right)$. By $\|\cdot\|_{p}(0<p \leqq \infty)$, we donote the various norms defined for compact operators T in terms of their characteristic numbers (i.e. the eigenvalues of $\left(T^{*} T\right)^{1 / 2}$, arranged in decreasing order and repeated according to multiplicity). By $C_{p}\left(L^{2}\left(R^{n}\right)\right)$, we denote the set of all compact operators T such that $\|T\|_{p}$ is finite. In particular $C_{1}\left(L^{2}\left(R^{n}\right)\right)$ is the trace class and $C_{2}\left(L^{2}\left(R^{n}\right)\right)$ is the Hilbert-Schmidt class.
3. Results. 1) Boundedness. Theorem 1 (cf. Cordes [3, Theorem D] and Kato [4, Theorem 5.2]). Let $a \in \mathcal{S}^{\prime}\left(R^{n} \times R^{n}\right)$ with $\left(1-\Delta_{x}\right)^{s}\left(1-\Delta_{\xi}\right)^{t} a \in L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)$ for some $s, t>n / 4$ and $\left\{p_{j}\right\} \in F[1, \infty]$. Then $a(X, D)$ is L^{2}-bounded. Moreover

$$
\begin{equation*}
\|a(X, D)\| \leqq C_{n, s, t}\left\|\left(1-\Delta_{x}\right)^{s}\left(1-\Delta_{\xi}\right)^{t} a\right\|_{L^{\left\{p_{j}\right\}},} \tag{3.1}
\end{equation*}
$$ where the constant $C_{n, s, t}$ is independent of a and $\left\{p_{j}\right\}$.

Theorem 2 (cf. Cordes [3, Theorem B_{1}^{\prime}] and Kato [4, Theorem 5.1]). Let $\left\{p_{j}\right\} \in F[1, \infty]$. If $D_{x}^{\alpha} D_{\xi}^{\beta} a \in L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)$ for $|\alpha|,|\beta| \leqq[n / 2]+1$, then $a(X, D)$ is L^{2}-bounded. Moreover

$$
\begin{equation*}
\|\alpha(X, D)\| \leqq C_{n} \sum_{|\alpha|,|\beta| \leqq[n / 2]+1}\left\|D_{x}^{\alpha} D_{\xi}^{\beta} a\right\|_{L^{\left[p_{j}\right]}} \tag{3.2}
\end{equation*}
$$

Here and hereafter C_{n} denotes a positive constant independent of a and $\left\{p_{j}\right\}$.

Theorem 3 (cf. Kato [4, Theorem 5.3]). Let $\left\{p_{j}\right\} \in F[1, \infty]$ and $0<\rho<1$. If $\left(1+\left.|\xi|\right|^{(|\beta|-|\alpha| \mid) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} \alpha \in L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)\right.$ for $|\alpha| \leqq[n / 2]+2,|\beta|$ $\leqq[n / 2]+1$, then $a(X, D)$ is L^{2}-bounded. Moreover

$$
\begin{equation*}
\|a(X, D)\| \leqq C_{n} \sum_{\substack{\left.|\alpha\\| \beta \mid \leq\left[\sum_{n} / 2\right]+2\right]+1}}\left\|(1+|\xi|)^{(||\beta|-|\alpha|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a\right\|_{L^{\left\{p_{j}\right\}}} \tag{3.3}
\end{equation*}
$$

Theorem 3'. Let $\left\{p_{j}\right\} \in F[1, \infty]$ and $0<\rho<1$. If

$$
(1+|x|)^{(|\alpha|-|\beta|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a \in L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)
$$

$$
\text { for }|\alpha| \leqq[n / 2]+1,\|\beta\| \leqq[n / 2]+2 \text {, }
$$

then $a(X, D)$ is L^{2}-bounded. Moreover

$$
\|a(X, D)\| \leqq C_{n} \sum_{\substack{\alpha|\leq[n / 2]+1\\| \beta \mid \leq[n / 2]+2}}\left\|(1+|x|)^{(|\alpha|-|\beta|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a\right\|_{\left.L^{\mid p}\right\}}^{\left|p_{j}\right|} .
$$

2) Compactness. Here we denote by $\chi_{R}(x, \xi)$ the characteristic function of the set $\left\{(x, \xi) \in R^{n} \times R^{n} ;|x|^{2}+|\xi|^{2}>R^{2}\right\}$.

Theorem 4 (cf. Cordes [3, Theorem E]). Let $\left\{p_{j}\right\} \in F[1, \infty] . \quad A s-$ sume $D_{x}^{\alpha} D_{\xi}^{\beta} a \in L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)$ and $\lim _{R \rightarrow \infty}\left\|\chi_{R} D_{x}^{\alpha} D_{\xi}^{\beta} a\right\|_{L^{\left\{p_{j}\right\}}}=0$ for $|\alpha|,|\beta|$ $\leqq[n / 2]+1$. Then $a(X, D)$ is a compact operator on $L^{2}\left(R^{n}\right)$.

Theorem 5. Let $\left\{p_{j}\right\} \in F[1, \infty]$ and $0<\rho<1$. Assume $(1+|\xi|)^{(|\beta|-|\alpha|\rangle \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a \in L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)$
and

$$
\begin{aligned}
& \lim _{R \rightarrow \infty}\left\|\chi_{R}(1+|\xi|)^{(|\beta|-|\alpha|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a\right\|_{L}^{\left\{p_{j}\right\}}=0 \\
& \\
& \quad \text { for }|\alpha| \leqq[n / 2]+2,|\beta| \leqq[n / 2]+1 .
\end{aligned}
$$

Then $a(X, D)$ is a compact operator on $L^{2}\left(R^{n}\right)$.
Theorem 5'. Let $\left\{p_{j}\right\} \in F[1, \infty]$ and $0<\rho<1$. Assume

$$
(1+|x|)^{(|\alpha|-|\beta|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a \in L^{\left[p_{j}\right\}}\left(R^{n} \times R^{n}\right)
$$

and

$$
\begin{aligned}
& \lim _{R \rightarrow \infty}\left\|\chi_{R}(1+|x|)^{(|\alpha|-|\beta|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a\right\|_{L^{(p, j]}}=0 \\
& \\
& \quad \text { for }|\alpha| \leqq[n / 2]+1,|\beta| \leqq[n / 2]+2 .
\end{aligned}
$$

Then $a(X, D)$ is a compact operator on $L^{2}\left(R^{n}\right)$.
Remark. We note that the following conditions are mutually equivalent for $f \in L^{\left\{p_{j}\right\}}\left(R^{n} \times R^{n}\right)$ with $\left\{p_{j}\right\}=\left\{p_{1}, \cdots, p_{\ell}\right\} \in F[1, \infty]$.
(i) $\lim _{R \rightarrow \infty}\left\|\chi_{R} f\right\|_{L}\left[p_{j}\right]=0$.
(ii) There exist $f_{j} \in L^{p_{j}}\left(R^{n} \times R^{n}\right)(j=1, \cdots, \ell)$ such that $f=\sum_{j=1}^{\ell} f_{j}$ and $\lim _{R \rightarrow \infty}\left\|\chi_{R} f_{i}\right\|_{L}^{p_{j}}=0(j=1, \cdots, \ell)$.
(iii) If $\infty \in\left\{p_{j}\right\}$ (i.e. $\left.p_{\ell}=\infty\right)$, there exist $f_{j} \in L^{p_{j}}\left(R^{n} \times R^{n}\right)(j=1$, $\cdots, \ell)$ such that $f=\sum_{j=1}^{\ell} f_{j}$ and $\lim _{R \rightarrow \infty}\left\|\chi_{R} f_{\ell}\right\|_{L^{\infty}}=0$.
4. Outlines of Proofs. 1) Proof of Theorem 1. A basic tool is the following identity formulated by Kato [4];

$$
\begin{equation*}
(b * g)(X, D)=\iint_{R^{n} \times R^{n}} d x d \xi b(x, \xi) e^{i \xi X} e^{-i x D} g(X, D) e^{i x D} e^{-i \xi X} \tag{4.1}
\end{equation*}
$$

where $*$ denotes the convolution on $R^{n} \times R^{n}$.
Lemma 1. Let $1 / p+1 / q=1,1 \leqq p \leqq \infty$. If $b \in L^{p}\left(R^{n} \times R^{n}\right)$ and $G \in C_{q}\left(L^{2}\left(R^{n}\right)\right)$ then $b\{G\} \in B\left(L^{2}\left(R^{n}\right)\right)$, where

$$
\begin{equation*}
b\{G\}=\iint_{R^{n} \times R^{n}} d x d \xi b(x, \xi) e^{i \xi X} e^{-i x D} G e^{i x D} e^{-i \xi X} \tag{4.2}
\end{equation*}
$$

as a strong (improper) integral. The mapping $b, G \mapsto b\{G\}$ has the following properties.
(i) $\|b\{G\}\| \leqq(2 \pi)^{n / q}\|b\|_{L^{p}}\|G\|_{q}$.
(ii) $b \geqq 0$ and $G \geqq 0$ imply $b\{G\} \geqq 0$.
(iii) $\left|(b\{G\} u, v)_{L_{2}}\right|^{2} \leqq(|b|\{|G|\} u, u)_{L^{2}}\left(|b|\left\{\left|G^{*}\right|\right\} v, v\right)_{L^{2}}$

Here $G \geqq 0$ means that G is non-negative self-adjoint and $|G|$ means $\left(G^{*} G\right)^{1 / 2}$.

Let ψ_{s} be the unique solution within $\mathcal{S}^{\prime}\left(R^{n}\right)$ for $(1-\Delta)^{s} \psi_{s}=\delta$, where s is a real number, Δ is the Laplacian, and δ is the delta function. It is well known that $\psi_{s} \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$,

$$
\begin{align*}
& D^{\alpha} \psi_{s}(x)=0\left(1+|x|^{2 s-n-|\alpha|}\right) \text { as }|x| \rightarrow 0 \text { if } 2 s-n-|\alpha| \neq 0, \tag{4.3}\\
& D^{\alpha} \psi_{s}(x) \text { decays exponentially as }|x| \rightarrow \infty .
\end{align*}
$$

Let $g(x, \xi)=\psi_{s}(x) \psi_{t}(\xi)$ with $s, t>n / 4$ then $g(X, D)$ has an extension in $C_{1}\left(L^{2}\left(R^{n}\right)\right.$) because of the following lemma.

Lemma 2. Let $\phi, \varphi \in L^{2}\left(R^{n}\right)$ and $g(x, \xi)=\phi(x) \varphi(\xi)$. If ϕ and φ decay exponentially as $|x| \rightarrow \infty$, then $g(X, D)$ has an extension G in $C_{1}\left(L^{2}\left(R^{n}\right)\right)$
(i.e. $g(X, D) \subset G \in C_{1}\left(L^{2}\left(R^{n}\right)\right)$.

Replacing b in (4.1) by $\left(1-\Delta_{x}\right)^{s}\left(1-\Delta_{\xi}\right)^{t} a$ and applying Lemma 1 , we can prove Theorem 1. For Theorem 2, it suffices that the assumption implies that of Theorem 1. This assertion is obtained from the following as in Cordes [3].

Lemma 3. For any $s>0$, we can write $(1-\Delta)^{1 / 2-s}=(1-\Delta)^{-(1 / 2+s)}$ $-i \sum_{j=1}^{n} S_{j}^{s} D_{j}$, where $(1-\Delta)^{-(1 / 2+s)}$ and S_{j}^{s} have the L^{1}-convolution kernels $\psi_{1 / 2+s}$ and $\partial \psi_{1 / 2+s} / \partial x_{j}$ respectively.
2) Proof of Theorem 3. In the same way as Kato [4], we use the partition of unity $\left\{\Phi_{k}(\xi)\right\}_{k=1}^{\infty}$ on R^{n} such that

$$
\begin{gather*}
\left|D_{\xi}^{\beta} \Phi_{k}(\xi)\right| \leqq C(1+|\xi|)^{-1 \beta \mid \rho} \quad \text { for }|\beta| \leqq[n / 2]+1, \tag{4.4}\\
\left||\xi|-k^{1 / 1-\rho}\right| \leqq C k^{\rho / 1-\rho} \quad \text { if } \xi \in \operatorname{supp} \Phi_{k}
\end{gather*}
$$

where C is a constant independent of k. Set

$$
\begin{align*}
a_{k}(x, \xi) & =\Phi_{k}(\xi) a(x, \xi), \quad k=1,2,3, \cdots, \text { so that } \\
a(x, \xi) & =\sum_{k=1}^{\infty} a_{k}(x, \xi), \quad a(X, D)=\sum_{k=1}^{\infty} a_{k}(X, D) . \tag{4.6}
\end{align*}
$$

In view of (4.4) and (4.5), there is a constant C independent of k such that

$$
\begin{equation*}
\left|\left(k^{-r} D_{x}\right)^{\alpha}\left(k^{r} D_{\xi}\right)^{\beta} a_{k}(x, \xi)\right| \leqq C \chi_{k}(\xi) \sum_{\beta^{\prime} \leq \beta} f_{\alpha, \beta^{\prime}}(x, \xi) \tag{4.7}
\end{equation*}
$$

for $|\alpha| \leqq[n / 2]+2,|\beta| \leqq[n / 2]+1$. Here $\gamma=\rho / 1-\rho>0, \chi_{k}$ denotes the characteristic function of supp Φ_{k},

$$
\begin{equation*}
f_{\alpha, \beta}(x, \xi)=\left|(1+|\xi|)^{(1 \beta|-|\alpha|) \rho} D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right| . \tag{4.8}
\end{equation*}
$$

From (4.7) and Theorem 2 and the assumption of Theorem 3, we obtain (4.9)

$$
a_{k}(X, D) \subset A_{k} \in C_{1}\left(L^{2}\left(R^{n}\right)\right)
$$

The following lemma which follows from Lemma 3 is equivalent to Lemma 5.4 in Kato [4], but we need explicit formula for calculation.

Lemma 4. There exist $\sigma>n / 4+1 / 2, \tau>n / 4$ and non-negative function $\mu \in L^{1}\left(R^{n}\right)$ such that $\mu(x)$ decays exponentially as $|x| \rightarrow \infty$ and

$$
\left|b_{k}(x, \xi)\right| \leqq \begin{cases}\int d y k^{n r} \mu\left(k^{r}(x-y)\right) \chi_{k}(\xi) F(y, \xi) & \text { if }[n / 2] \text { is odd }, \tag{4.10}\\ \int d \eta k^{-n \gamma} \mu\left(k^{-r}(\xi-\eta)\right) \chi_{k}(\eta) F(x, \eta) & \text { if }[n / 2] \text { is even },\end{cases}
$$

where

$$
\begin{gather*}
b_{k}(x, \xi)=\left(1-k^{-2 r} \Delta_{x}\right)^{\sigma}\left(1-k^{2 r} \Delta_{\xi}\right)^{\tau} a(x, \xi), \tag{4.11}\\
F(x, \xi)=\sum_{\substack{\alpha|<| \\
|\beta| \leq[n / 2]+2\\
| n| 2]+1}}\left|f_{\alpha, \beta}(x, \xi)\right|, \tag{4.12}
\end{gather*}
$$

and the constants σ, τ and the function μ do not depend on k but only on n.

With these numbers σ, τ, we define $g_{k}(x, \xi)=\psi_{\sigma}\left(k^{\tau} x\right) \psi_{\tau}\left(k^{-r \xi}\right)$. Then

$$
\begin{array}{cc}
g_{k}(X, D) \subset G_{k} \in C_{1}\left(L^{2}\left(R^{n}\right)\right) \\
& \text { (from (4.3) and Lemma 2), } \\
A_{k}=b_{k}\left\{G_{k}\right\} & \text { (from (4.1) and (4.2)), } \\
\left|\left(A_{k} u, v\right)_{L^{2}}\right|^{2} \leqq\left(\left|b_{k}\right|\left\{\left|G_{k}\right|\right\} u, u\right)_{L^{2}}\left(\left|b_{k}\right|\left\{\left|G_{k}^{*}\right|\right\} v, v\right)_{L^{2}} \tag{4.15}
\end{array}
$$

$$
\text { for } u, v \in L^{2}\left(R^{n}\right) \quad \text { (from Lemma } 1 \text { (iii)). }
$$

Taking (4.6) into account, we must prove the boundedness of $\sum_{k} A_{k}$. To do this, it is enough to show that $\sum_{k}\left|b_{k}\right|\left\{\left|G_{k}\right|\right\}$ and $\sum_{k}\left|b_{k}\right|\left\{\left|G_{k}{ }^{*}\right|\right\}$ converge with respect to the operator norm.

Let $\left\{p_{j}\right\}=\left\{p_{1}, \cdots, p_{\ell}\right\} \in F[1, \infty]$. From the assumption of Theorem 3 , each $f_{\alpha, \beta}(x, \xi)$ of (4.8) can be written as

$$
\begin{equation*}
f_{\alpha, \beta}(x, \xi)=\sum_{j=1}^{\ell} f_{\alpha, \beta, j}(x, \xi), \quad f_{\alpha, \beta, j} \in L^{p_{j}}\left(R^{n} \times R^{n}\right) \tag{4.16}
\end{equation*}
$$

We put

$$
\begin{equation*}
f_{j}(x, \xi)=\sum_{\substack{|\alpha| \leq[n / 2]+2 \\|\beta| \leq[n / 2]+1}}\left|f_{\alpha, \beta, j}(x, \xi)\right| \in L^{p_{j}}\left(R^{n} \times R^{n}\right) . \tag{4.17}
\end{equation*}
$$

From (4.10) and (4.12), we obtain that

$$
\sum_{k=1}^{\infty}\left(\left|b_{k}\right|\left\{\left|G_{k}\right|\right\} u, u\right) \leqq \begin{cases}\sum_{j=1}^{\ell} P_{j} & \text { if }[n / 2] \text { is odd } \tag{4.18}\\ \sum_{j=1}^{\ell} Q_{j} & \text { if }[n / 2] \text { is even }\end{cases}
$$

where

$$
\begin{align*}
& P_{j}=\sum_{k=1}^{\infty} \iint d x d \xi \int d y \mu(\left.k^{\gamma}(x-y)\right) k^{n \gamma} \chi_{k}(\xi) f_{j}(y, \xi) \tag{4.19}\\
& \quad \times\left(e^{i \xi X} e^{-i x D}\left|G_{k}\right| e^{i x D} e^{-i \xi X} u, u\right), \\
& Q_{j}=\sum_{k=1}^{\infty} \iint d x d \xi \int d \eta \mu\left(k^{-\gamma}(\xi-\eta)\right) k^{-n \gamma} \chi_{k}(\eta) f_{j}(x, \eta) \tag{4.20}\\
& \times\left(e^{i \xi X} e^{-i x D}\left|G_{k}\right| e^{i x D} e^{-i \xi X} u, u\right) .
\end{align*}
$$

In the same way we obtain that

$$
\sum_{k=1}^{\infty}\left(\left|b_{k}\right|\left\{\left|G_{k}{ }^{*}\right|\right\} u, u\right) \leqq \begin{cases}\sum_{j=1}^{\ell} P_{j}^{*} & \text { if }[n / 2] \text { is odd } \\ \sum_{j=1}^{\ell} Q_{j}^{*} & \text { if }[n / 2] \text { is even }\end{cases}
$$

where P_{j}^{*} and Q_{j}^{*} are defined by replacing $\left|G_{k}\right|$ by $\left|G_{k}^{*}\right|$ in (4.19) and (4.20).

In the case $p_{j}=1$, we can easily obtain that

$$
\begin{equation*}
P_{j}, P_{j}^{*}, Q_{j}, Q_{j}^{*} \leqq C_{n}\|G\| \cdot\left\|f_{j}\right\|_{L^{1}}\|u\|^{2} . \tag{4.21}
\end{equation*}
$$

In the case $p_{j}=\infty$, we notice that G_{1} and $G_{k}(k \geqq 2)$ are unitary equivalent and that $\sum_{k=1}^{\infty} \chi_{k}\left(\xi-k^{\dagger} \eta\right) \leqq 2(C+|\eta|)$ for $\xi, \eta \in R^{n}$ (equivalent to Lemma 5.5 in Kato [4]).

Lemma 5 (cf. Kato [4, Lemma 4.2]). Let $g(x, \xi)=\psi_{s}(x) \psi_{t}(\xi)$. Then the followings are valid.
i) $D_{j} g(X, D), g(X, D) D_{j},|D| g(X, D)$ and $g(X, D)|D|$ have extension in $C_{1}\left(L^{2}\left(R^{n}\right)\right)$ if $s>n / 4+1 / 2, t>n / 4$.
ii) $g(X, D) X_{j}, X_{j} g(X, D), g(X, D)|X|$ and $|X| g(X, D)$ have extension in $C_{1}\left(L^{2}\left(R^{n}\right)\right.$) if $s>n / 4, t>n / 4+1 / 2$.

Using above Lemma 5, we obtain as in Kato [4] that
(4.22) $\quad P_{j}, P_{j}^{*}, Q_{j}, Q_{j}^{*} \leqq C_{n}\left(\|G\|_{1}+\|G|D|\|_{1}+\|D \mid G\|_{1}\right)\left\|f_{j}\right\|_{L^{\infty}}\|u\|^{2}$.

In the case $1<p_{j}<\infty$, we use the Hölder inequality and obtain that
for any constant $C>0$

$$
\begin{align*}
& \int d y \mu\left(k^{r}(x-y)\right) k^{n r} \chi_{k}(\xi) f_{j}(y, \xi) \\
& \quad \leqq\left(C^{p_{j}} / p_{j}\right) \int d y \mu\left(k^{r}(x-y)\right) k^{n r} \chi_{k}(\xi) f_{j}^{p_{j}}(y, \xi) \tag{4.23}\\
& \quad+\left(C^{-q_{j}} / q_{j}\right) \int d y \mu\left(k^{r}(x-y)\right) k^{n r} \chi_{k}(\xi) \\
& \int d \eta \mu\left(k^{-r}(\xi-\eta)\right) k^{-n r} \chi_{k}(\eta) f_{j}(x, \eta) \\
& \leqq \\
& \quad\left(C^{p_{j}} / p_{j}\right) \int d \eta \mu\left(k^{-r}(\xi-\eta)\right) k^{-n \gamma} \chi_{k}(\eta) f_{j}^{p_{j}}(x, \eta) \\
& \quad+\left(C^{-q_{j}} / q_{j}\right) \int d \eta \mu\left(k^{-r}(\xi-\eta)\right) k^{-n \gamma} \chi_{k}(\eta)
\end{align*}
$$

Using (4.23) and (4.23'), we can reduce the estimates of P_{j}, P_{j}^{*}, Q_{j}, and Q_{j}^{*} in this case to those in the case $p_{j}=1$ and in the case $p_{j}=\infty$. Choosing a suitable constant C, we obtain that
(4.24) $\quad P_{j}, P_{j}^{*}, Q_{j}, Q_{j}^{*} \leqq C_{n}\left(\|G\|_{1}+\left\|G\left|D\left\|_{1}+\right\|\right| D \mid G\right\|_{1}\right)\left\|f_{j}\right\|_{L^{p_{j}}\|u\|^{2} .}$

Noting the symmetry of roles of (x, X) and (ξ, D), we can similarly prove Theorem 3^{\prime}. We can prove as in Cordes [3] that Theorems 4,5, and 5^{\prime} follow from Theorems 2, 3, and 3^{\prime} respectively.

References

[1] A. P. Calderón and R. Vaillancourt: On the boundedness of pseudo-differential operators. J. Math. Soc. Japan, 23, 374-378 (1971).
[2] -: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA, 69, 1185-1187 (1972).
[3] H. O. Cordes: On compactness of commutators of multiplications and convolutions, and boundedness of pseudo-differential operators. J. Func. Anal., 18, 115-131 (1975).
[4] T. Kato: Boundedness of some pseudo-differential operators. Osaka J. Math., 13, 1-9 (1976).

